
On segmentation of Nerve Structures in Ultrasound Images
Manikanta Reddy Dornala

Indian Institute of Technology, Kanpur

ABSTRACT
Pain is one of the most important aspects, that has to be properly
managed, for easing the su�ering of a patient and improve their
quality of life. Pain management is typically done through the
administration of narcotics, which also bring with them other un-
wanted e�ects. On the other hand introducing pain management
catheters1, that block or mitigate the pain at source, reduce depen-
dency on the narcotics and speed up the recovery process. We will
discuss the problem of identifying nerve structures in the region
around neck so that the indwelling catheters are rightly placed and
provide a pain free future.

1 INTRODUCTION
Accurately identifying the nerve structures, also called the Brachial
Plexus2, in the ultrasound images of the region around the neck
can be modeled as an image segmentation problem. By placing the
nerve structure in one class and the rest in the contrary, the prob-
lem is further simpli�ed to a binary classi�cation problem. Many
methods exist to perform binary image segmentation, ranging from
simple threshold based approaches to ones that use very deep neu-
ral networks. We will be discussing a method based on proposals
by overlapping windows and the other, based on the U-net archi-
tecture3. We will also look into how the choice of architecture of
the neural net, makes the learning di�erent in the deeper layers.

�e goal of any image segmentation algorithm is to represent the
image in a more meaningful manner and to identify structures and
boundaries around them. In its simplest form segmentation is as-
signing class labels to every pixel in the image. We’ll be segmenting
ultrasound images of a region around the neck.

1.1 Problem
�e region of our interest is a collection of nerve structures called
Brachial Plexus, which extends over the spinal cord, through the
neck and into the armpit. Identifying the accurate location of
this nerve structure is a critical step in inserting the patients pain
management catheter. �e problem is posted as a challenge on
Kaggle4 to build a model that can locate the plexus in a dataset of
ultrasound images of the neck.

2 DATA
�e dataset provided consists of large training set of ultrasound
images, in which the nerve structure is manually annotated by
trained experts. �e experts make their mark on the basis of their
con�dence of existence of BP in the image.

1Pain Management Catheters
2Wikipedia: Brachial Plexus
3U-net: Convolutional networks for biomedical image segmentation[1]
4Kaggle: Ultrasound Nerve Segmentation

Given below are two images, one is the ultra sound image itself
and the other is the human annotation.

(a) Ultrasound Image (b) Human Annotation

Fig 1. Sample Data from training set [Id : 47 117]

�e white region represents our region of interest. �e model
which we will build has to take the gray scale ultrasound image on
the le� as input and output a binary mask, similar to the binary
image on the right. It has to be noted that the output is not gray
scale. �e intensities will be exclusively either 0 or 255.

Fig 2. Image with overlay
Notice the red boundary over the region of interest

Priori analysis of the data reveals that about 60% of the images
do not posses a mask, implying that they have no BP landmark.
Hence we might not worry about the statistical bias in the supply
of data.

Other notable key points about the dataset,
• Image size: 580x420 pixels
• 5635 training images
• 5508 testing images
• Noise and other artifacts present
• Repetition of the images

http://www.med.umich.edu/1libr/Anesthesiology/PeripheralNerveCatheterWhatIstIt.pdf
https://en.wikipedia.org/wiki/Brachial_plexus
https://www.kaggle.com/c/ultrasound-nerve-segmentation/

2.1 Inconsistencies in the Data-set
�ere are potential mistakes in the ground truth of the data. By
this we mean that there are images, which are very similar to each
other yet have di�ering masks5.

One of the images has a mask while the other doesn’t and due to
the nature of loss function we use for this problem, false positives
and false negatives are penalized heavily.

�e occurrence of such contrary images is highly likely in the test
data-set provided. Coupled with the loss function, this particular
empirical observation sets an upper bound on the results.

Another aspect of the image generation is the way they are
produced. It seems that the images are frames of the ultrasound
video feed, due to which we encounter multiple images which are
actually the same frame. 6

2.2 Dice Coe�cient
It has been suggested7that Dice coe�cient be used as an error mea-
sure. Given two sets A and B, dice index of them is,

Q =

{
|A∩B |
|A |+ |B | if A , ϕ |B , ϕ
1 otherwise

�is function penalizes any kind of wrong predictions. Just cap-
turing the where and what is not enough, the prediction and truth
have to be highly correlated. It is necessary that the binary outputs
look as good as the real ones.

3 DATA PRE PROCESSING
In order to minimize the inherent inconsistencies, we pre process
the whole of the data-set.

3.1 Image Down Scaling
�e images have been scaled down from 580x420 to 128x128. Other
scales haven’t been tested and could perform be�er. �e reason
to choose this scale is largely for programmatic ease and to avoid
memory over�ows in the system that’s been used. 8

3.2 Removal of Inconsistent data
In order to minimize contradictory data, we will remove all such
pairs of images from data-set, which although are morphologically
similar posses di�erent label masks.

�e closeness of two images was determined using cosine dis-
tance over block histograms of the images. Instead of dropping such
images, propagating the masks over to the empty one, was also
tried, but this didn’t o�er any convincing spike in the prediction
power and rather degraded performance.

3.3 Generating More Data
One of the main advantages of working on medical images is that
the objects of interest in the images are organic. �ey are indi�er-
ent to distortions and warping. �erefore we can freely transform
the images by slightly changing them (Apply small a�ne transfor-
mations) to generate a completely di�erent image that although
5Mislabeled Training Images
6Data Description
7Evaluation
8More experimentation has to be done, before any comment is made.

di�erent, can still be considered as a valid image for training. �is
compensates for the images we dropped previously.

4 SLIDINGWINDOW PROPOSALS
�is method is based on the idea that, the label a pixel will take
depends on who its neighbors are and what labels they are taking.
In order to encapsulate the information about what and how the
neighbors of a pixel are doing, we consider a window around the
pixel and map the pixels to a functional value and then use this
functional value as a measure of con�dence the window has, in the
pixel, towards a particular class.

(a) Ultrasound Image with window

(b) Mask with corresponding window

Fig 3. Window Illustration [Id : 1 85]

In the �gures above, both the images have the window overlay,
in white, at the same location. We call such windows corresponding
windows. �ey are capturing information from the same region,
albeit in a di�erent plane.

4.1 Sliding Windows
We’ll considerw as the window in the ultrasound image, or x , and
wmask as the corresponding window in the mask image, ory. Every
pixel in the image has some intensity value given by some intensity
function I : pi → (0, 255). �e window(w) will contain some �nite
number of pixels and can be wri�en as a set of all the pixels in the
window as

w = {pi/pi ∈ w}
2

https://www.kaggle.com/agalea91/ultrasound-nerve-segmentation/mislabeled-training-images/run/310043
https://www.kaggle.com/c/ultrasound-nerve-segmentation/data
https://www.kaggle.com/c/ultrasound-nerve-segmentation/details/evaluation

or in a vector form as

w = (I (p1), I (p2), ..., I (pi), ...).#9

Henceforth, w j will be the window in mask and wmask j is the
corresponding window in the mask andW be range space of all
windows. We can see that all windows over an image will therefore
be unique sets of pixels. �ese sets may overlap, that is, a pixel can
be present in multiple windows.
In our method, we try to build two functions Γ :W → [0, 1] and
Θ :W → [0, 1] such that

Γ(w j) = Θ(wmask j)
For our problem we de�ne Θ as the mean of binary values of

pixels in the window.

Θ(wmask j) =

n∑
pi ∈wmask j

I (pi)

n

We approximate Γ as a logistic regressionmodel and learn it through
training which can be setup easily by dividing the images into slid-
ing boxes with overlapping (some stride length). �ese boxes can
be considered as windows.
Θ in a practical sense gives us an idea of how much interesting
region it contains. Γ then tries to �gure out what feature of the
original pixels generates such interesting region. Γ(w) is the proba-
bility that the window has some mask.
By the end of this we land upwith Γ, a function capable of predicting
how much of the window belongs to the region of interest.

4.2 �e Proposals
If we are able to somehow predict the class of a pixel our problem
is done. We have already devised a way of relating the windows
to region of interests. We now try to devise a way to use the
information about windows for pixels.

Every pixel in the image will belong to some �nite number of
windows, owing to the way how the windows are built. Every such
window will capture some neighborhood of our pixel. �us win-
dows can be considered good representatives of the neighborhoods
of the pixel. Any operation the window is an operation on the
neighborhood.

If a pixel neighborhood holds some property, it is very likely
that the property will hold for the pixel too. If windows have some
probability of having some mask, so does the pixel. A window
makes a proposal for a pixel to be a pixel in region of interest.

Since a pixel can belong to multiple windows, multiple neigh-
borhoods have an a�ect on it simultaneously. We now make an
important assumption that multiple neighborhoods a�ect the pixel
independently.

�us using the above arguments, we de�ne the probability(P(pi))
that a pixel pi will be a pixel in region of interest as

P(pi) =
∏

pi ∈w j

Γ(w j)

Using this probability as a measure and by choosing appropriate
thresholds, we can generate masks for any ultrasound image.

9We consider that, all windows are of same width and height, thus are of same
dimension.

5 NEURAL NETWORKS
5.1 Encoder-Decoder
We are motivated by a simple desire to preserve spatial locality of
the region of interest in the context of the entire image. We built a
simple Encoder-Decoder network to do the same.

We hope that the network learns a representation just enough
to distinguish pixels of the nerve structure from the rest.

Fig 4. Encoder Decoder10

�e network built was 4 pool layers deep with 3 convolutions in
each layer. �ere is a simple contracting path and then a expanding
path, that embed the information present in the entire image into
lower dimensional vectors. �e size of this vector is halved at every
pool layer.

Autoencoders[2] can capture the context of the image in a very
good manner in the representation it learns, but doesn’t perform
well when trying to learn the spatial localization present in the
image.

In other words, this network captures the ’what’ in the image
but not the ’where’ that particular answer to ’what’ is present.

5.2 U-net
We understand that the encoder decoder fails at one particular
learning problem, capturing the spatial localization. In order to
achieve this, all we have to do is provide the spatial information as
well.

We do so by combining the high resolution features from the
contracting path with the up-sampling features in the expanding
path.

10By Chervinskii - Own work, CC BY-SA 4.0, wikimedia

3

https://commons.wikimedia.org/w/index.php?curid=45555552

Fig 5. U-net

U-net[1] has two parts. i) Encoder and ii) Decoder. �e �rst part
is simple convolution network that embeds the image into lower
dimensional vectors. �e second part is also a simple upsampling
network, but, with a change.

At every pooling step in the encoder network, we collect the vec-
tors and feed them (concatenate with) the upsampled vectors from
the previously layer in the decoder network. (Note the Concatenate
local features step in the image.

We are forcing the network to give emphasis on the high reso-
lution features that are lost during the encoding step. During the
contraction phase, the ’what’ in the image is highly consolidated,
’where’ is lost. �e concatenation step, forces the network to relearn
the ’where’, which it ignored in the contraction.

�e �nal output will thus contain both the context and localiza-
tion information in it.

5.3 Dreams
Dreams are a good way to visualize what the features, the �lters
are learning. �ey represent what kind of input ,excites, the �lters.
11

As you can see in Fig 6, U-net responds well to images with
Brachial Plexus, something that autoencoder failed. Autoencoder
would respond very well to ultrasound images of the neck, but can’t
�nd where exactly this nerve structure is present in it.

6 POST PROCESSING
�e output generated by any of the methods discussed is just a
probability map of every pixel’s likeliness to be in the region of
interest. But as the problem demands in order to score, we should
have output masks that would be as close to human like annotations.
In order to convert this probability map into an annotation like
image we employ di�erent techniques.

6.1 �resholding
We could simply set a threshold over the probability and generate
binary outputs. But this solution, puts forward a serious problem.

11Deep Dreams
11Inceptionism: Going deeper into neural networks[3]

Fig 7. Discontinuity due to thresholds

On what basis do we chose the threshold? Certainly it is not the
visual appeal. We should also not try to train a model to learn the
threshold, because if something like that were possible, it would
have been picked up by the model itself (at least in the neural
networks).

�e second problem is related to the discontinuous maps it can
create. �e threshold can be set in such a way that a certain region
in the middle can be labeled the other way.
�e problem of undesired holes can be solved by applying a mor-
phological closing method, but still we would not have outputs that
look human like.

6.2 PCA based cleaning
�e desire to generate human-like annotations, points us to the
question, what makes a mask human-like? Can we learn this too?
We have many images that can teach us to generate such masks.

In order to learn such features, we train a PCA model on all
training masks, with region of interest. �e PCA model will then
give us some Eigen Masks, or the inner features of drawing an
annotation. Using a linear combination of these eigen masks, we
should be in principle able to generate masks, that look like human
annotated masks.

(a) Probability Map (b) PCA cleaned Mask

Fig 8. PCA transformation of probability masks

4

https://blog.keras.io/category/demo.html

(a) Autoencoder’s Dreams
(b) Unet’s Dream

Fig 6. Dreams
Notice the �brous structures in U-net’s dream

7 RESULTS
�e results are computed by taking the mean of Dice score of the
predicted masks with the annotated masks. A blank image, itself
gives us a score of 0.53 indicating that about half of the images do
not contain any mask.

�e proposal based method used windows of size 30x30 at a
stride length of 10. Experimentation with respect to window size
and length is yet to be done.

5

Table 1: Average Dice Coe�cients

Model Best Dice Score
Blank images 0.53449
Proposal Based 0.56527
Autoencoder 0.62322
U-net (without PCA) 0.66890
U-net (with PCA) 0.68719

�e auto-encoder based method was a huge jump from previous
solutions, as it was capable enough to capture the nerve structures
as we have seen.

Introducing extra connections in the encoder-decoder network
to build the U-net brought the score up by 4%, indicating a strong
learning of localization information.

Post processing using PCA cleaning de�nitely brought a �nal
bump in the score by about 2%. A much be�er post processing
could also work.

REFERENCES
[1] O. Ronneberger, P. Fischer, and T. Brox, “U-net: Convolutional networks for

biomedical image segmentation,” in International Conference on Medical Image
Computing and Computer-Assisted Intervention, pp. 234–241, Springer, 2015.

[2] P. Baldi, “Autoencoders, unsupervised learning, and deep architectures.,” ICML
unsupervised and transfer learning, vol. 27, no. 37-50, p. 1, 2012.

[3] A. Mordvintsev, C. Olah, and M. Tyka, “Inceptionism: Going deeper into neural
networks,” Google Research Blog. Retrieved June, vol. 20, 2015.

6

	Abstract
	1 Introduction
	1.1 Problem

	2 Data
	2.1 Inconsistencies in the Data-set
	2.2 Dice Coefficient

	3 Data Pre Processing
	3.1 Image Down Scaling
	3.2 Removal of Inconsistent data
	3.3 Generating More Data

	4 Sliding Window Proposals
	4.1 Sliding Windows
	4.2 The Proposals

	5 Neural Networks
	5.1 Encoder-Decoder
	5.2 U-net
	5.3 Dreams

	6 Post Processing
	6.1 Thresholding
	6.2 PCA based cleaning

	7 Results
	References

