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ABSTRACT
The goal of this project is to model vehicles driving along
Peachtree Street. The model is only taking into account traffic
in one direction, and spanning from the 10th street intersection
to the 14th street intersection. We will then analyze the average
travel time for a vehicle to go from the origination zone to the
destination zone in the area of analysis (show in Figure 1). As
with all models, some simplifications and assumptions will
be made, to be described in Section 4-6, under the respective
simulation type. Simulations in this area are extremely useful
for their potential to impact multitudes of lives, based on the
insight provided from the simulation. Additional lights can be
tested, turn lanes added, and even adjustments of traffic light
timing can be tested before real world implementation. In
addition, new scenarios can be tested, like entirely motorcycle
or truck traffic, how flow of traffic can affect travel time and
how peak times can affect overall travel times.

1 INPUT ANALYSIS
There are many variables available for tuning within the prob-
lem. These can be broken down into the following areas:

• Traffic
• Traffic Lights
• Vehicle Parameters

These parameters have been explored in order to develop a
realistic simulator, and can always be expanded upon further
in future expansions to the project. Note that all exploration
discussed below involved partitioning the NGSIM data set
received into two groups, one to analyze and a smaller section
in order to compare our simulators to some real life examples.
All data analyzed referred only to traffic moving in our chosen
direction of traffic, Northbound.

1.1 Traffic
One of the largest inputs dealing with traffic alone is the inter-
arrival time for vehicles. The team has analyzed the input
data set partition, and found that the arrival times closely
match a Poisson distribution, as seen in Figure 4. This data
will be further discussed in the following subsection. The inter
arrival time was utilized during the generation of vehicles
and the logic to determine when another vehicle should be
spawned. Another input available for tweaking with traffic
are the Origin and Destination Zones. There is currently an
implementation of an empirical generator, based on our afore-
mentioned grouping of test data.

Figure 1: Depiction of the Peachtree Street Corridor, from
10th Street to 14th Street
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Figure 2: Travel Time Distribution
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Figure 3: Input data Distribution

1.1.1 Inter-Arrival Times

Each individual graph in Figure 4 shows how the real dis-
tribution from the 75% data split compares to a Poisson Dis-
tribution with the same mean as the true distribution. The
Inversion method distribution is generated from the inverse
IDF curve of the True Inter-Arrival Rate of the training data
split. This is also utilized for the implementation of vehicle
inter arrival times, providing a different set of results that can
be compared and contrasted.

1.1.2 Vehicle Origin and Destination Zones

We can see from Figure 3a and Figure 3b that the majority
of vehicles enter at Intersection 1 and exit at Intersection 5. To
ease in the development of the simulation while still main-
taining a realistic level of traffic, some implementations of
our simulators only generate traffic going directly from one
end of the corridor to the other. In addition, these simulators
disregard lateral traffic. As shown in Sections 4-7, even with
these simplifications we are able to achieve a realistic measure
of success.
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(b) Intersection 1
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(c) Intersection 2
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(d) Intersection 3
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(e) Intersection 4
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(f) Intersection 5

Figure 4: Inter Arrival Times - Comparing Actual Distribution, Poisson and IDF generated distribution

Figure 5: Cycles of Traffic Lights

1.2 Traffic Lights
The main parameter that can be adjusted here is the initial
state of the lights. The transition times of the lights are highly
detailed in source material, and is implemented in our project.
Based on the initial state of the lights, you may see a large
variation of vehicle travel times though the Peachtree corridor.
Figure 5 depicts the process graphically.

1.3 Vehicle Parameters
There are many vehicle parameters that can be adjusted to
complicate the project more. Some are not necessary to achieve
realistic levels of performance of our model during simulation.

• Vehicle Length
• Vehicle Acceleration
• Vehicle Reaction time
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• Vehicle stop location at intersections
• Safety buffer size

Some of these parameters are examined in the two reports
given to the class, and can be utilized as such. Others will
be further explored in the future of this project, and will
evolve from the currently implemented uniform distributions
or static pieces, into more stochastic processes, matched to
distributions seen in the NGSIM data-set.

1.4 Overall Input Discussion
Some overarching questions can be raised regarding the data
set, and will be under discussion in this section.These ques-
tions are as follows:

• Inter-arrival time of every intersection
• Independence Tests
• Whether the data is Stationary or Non-stationary
• Relevance of lateral traffic.

1.4.1 Inter-arrival time of every intersection

As depicted in Figure 4, there exists a vast difference in
the arrival times for specific intersections vs the overall ar-
rival time. Previously discussed in the Vehicle Origin and
Destination Zones subsection, the majority of vehicles end up
spawned at Intersection 1. All of the individual intersections
still roughly follow a Poisson distribution.

1.4.2 Independence Tests

An important question should be raised on whether data
points are independent, or correlated to one another. Because
vehicles that take longer to travel through the corridor will
occupy road segments for more time, you can see that the data
points are indeed correlated to one another, based on average
travel time. If there are simply more vehicles, or even the same
amount of vehicles but entering the corridor in closer prox-
imity to one another, they will all begin delaying one another
much more and account for overall longer travel times in the
corridor. Visual analysis of the scatter plot in figure 6b reveals
how number of cars arriving at time t + 1 is independent of
the number of cars arriving at t in our data set. Hence our
inter arrival duration is an independent random variable.

1.4.3 Stationary vs Non-Stationary

The NGSIM data set given to us covers 4:00-4:15 pm. Given
such a small window of time, it is easy to see how the data is
considered stationary. If instead, the data set covered multiple
hours, days, or weeks, it is trivial to see how the data would
become Non-Stationary. This could be due to factors such as

• Work Schedules
• Meal times
• Holidays
• Popular Events

To have a statistical basis for stationarity we performed the
Dickey Fueller test on our time series of vehicle counts. This
resulted in a p-value of 0.95 and a test statistic of 0.0, with
critical values being -4.6(1%), -3.4 (5%) and -2.8 (10%) showing

that the is significant since the critical values are less than the
test statistic. 1

2 CONCEPTUAL MODEL
As all 3 implementations of models take various liberties
between assumptions, the specific assumptions key to each
model will be discussed separately in their own sections. All
the simulation model only one direction of traffic along the
corridor.

3 ACTIVITY SCANNING
The activity scanning model is very similar to event driven
simulation. All entities are now viewed to be taking part in
activities, which are still transitioned between using events.
A uniform time step is utilized between all simulation tics,
currently set at one second.

3.1 Assumptions
There are a few assumptions utilized in the implementation
of the activity scanning model. Things like predetermined
vehicle length, instantaneous acceleration/deceleration and
simplified driver behaviors allow for an easily implemented
model while still resulting in realistic outputs. In addition,
inter arrival time are currently set to be drawn from a Poisson
distribution, as discussed in Input Analysis section. Vehicles
are currently able to be spawned from any potential Origin
Zone, with any potential northbound Destination Zone also
being able to be spawned.

3.2 Implementation
The activity scanning model is implemented in the inefficient,
non priority queue methodology. Instead, a program loop
must iterate over a list of activities multiple times per simula-
tion tick in order to ensure all potential activities are executed
at a moment in time. Although Activity Scanning models al-
low for B and C type activities, only C type activities currently
exist in the implemented model as all potential activities have
a predicate requirement (for example, a road space being unoc-
cupied to move). A data structure of potential road segments
is utilized to check the availability for movement of all ve-
hicles. To contain all C type activities, there exists a typical
python list that gets added to and removed from during each
time execution.

3.3 Simulator Applicability and Limitations
This simulator has tried to be developed in a modular method
that allows for easy adaptation of many scenarios. One short-
coming of the method of implementation is with set vehicle
length and large road segment lengths. This makes the sim-
ulator unable to cope currently with varying travel speeds,
vehicle lengths and inefficiently uses the available road space.
As a future expansion, the road could instead be split up into
1 foot segments, allowing for more efficient layout of vehicles

1https://en.wikipedia.org/wiki/Dickey-Fuller_test
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Figure 6: Input Analysis

and adaptable velocity. This would in turn allow the adap-
tion of the simulator into a system of simulators, allowing
for models covering driver aggression, stopping distance and
following distance.

4 CELLULAR AUTOMATA
4.1 General model description
The model implemented in this section is a cellular automata
model of traffic flow. Each cells in the cellular automata rep-
resents a vehicle, while the grid represents the street. Each
cell in the grid can either be empty or occupied by a single
vehicle. In each timestep, each vehicles observe the state of the
street in front of it and react by either staying still or moving
forward.

4.2 Assumptions
The additional assumptions implemented into the cellular
automata model are as follows:

• All vehicles in the same run are the same length (1 block)
of either 8, 16, or 32 feet long.

• Vehicle speed is either stopped, 16ft/s, or 32 ft/s.
• All drivers will try to maintain at least 1 block of gap to

the preceding vehicle while moving.
• All vehicles exits the system at 214. In other words, no

vehicle turns off of the street.
• No lane changes occurs.
• Vehicle inter-arrival time is assumed to be a Poisson

distribution with probability such that the average rate
of vehicle spawning matches the rate found in the data
set.

4.3 Modifications
The first modification is that instead of storing whether each
cells contains or does not contain a vehicle, each cells actually
contains a reference to a specific vehicle instance. This allows
more detailed tracking of the vehicle to be implemented. The

vehicle are tracked in terms of its location, time it enters the
road system, and velocity. This information is used to calcu-
late the amount of time the vehicle spent in the road system
before exiting. This allows the system to avoid processing the
empty cells and improve performance while remaining math-
ematically identical to direct cellular automata simulation.

The second modification is that another grid of traffic lights
are also tracked. A red light behaves like an occupied cell,
whereas a green light behaves like an empty spot. This allows
the vehicle to react to the state of the traffic light appropriately.

4.4 Simulator limitations
The assumptions used in the construction of the simulator
causes the following limitations:

• The system can’t simulate traffic with mixed vehicle
length.

• The system assume all vehicle accelerate at the same
constant rate.

• The system does not allow vehicle to turn off of the
street.

• The system does not allow for lane changes. This may
cause traffic imbalance between lanes.

5 EVENT ORIENTED QUEUING
In this model of traffic simulation, movement of traffic is mod-
eled as discrete events being triggered at different times in the
forward march of time.

5.1 Assumptions
For the purposes of this simulator built certain assumptions
have been made.

• All vehicles are the same.
• They move with a constant speed and accelerate or

decelerate instantly.
• The traffic lights between the sections have only two

signals (red or green). This decision was made because
5



the duration of yellow light was very low compared to
green or red signals as per input data. Figure 5.

• Vehicles can only go forward, although lights for right
and left turn have been implemented. This is a justified
assumption based on Figure 3. We have previously seen
that the number of vehicles entering or exiting through
right or left sections is very less as compared to the for-
ward traffic. Hence a decision has been made to exclude
the lateral traffic.

• Sections of roads have a fixed travel time. This is based
on the actual lengths of the sections from map data and
a fixed constant velocity of the vehicles estimated as the
average from input data.

• Sections of roads have a fixed capacity (maximum num-
ber of vehicles that can be present in that section at any
moment in time). This is decided by the lengths of the
sections and length of the vehicles.

5.2 Components
The event driven model has two components, the application
layer and the executive layer.

The executive layer is the core engine, that is agnostic of our
application layer and can be used for any other simulation. It
manages the future event list as a priority queue and schedules
events as per their time stamps. It also maintains the clock of
the system. The engine also runs the simulation by executing
events by picking them from future event lists in the order
of their priority (timestamp). Whenever an event is removed
from the FEL, an event handler provided by the application
layer is called to execute simulation logic. These events can be
of different types and each may have a different event handler
associated with them.

The application layer consists of all the logic regarding
event creations and entity relationships.

5.3 Entities
We have three entity types in the simulation 1) Car, 2) Traffic
Light and 3) Road section. There are multiple instance of each
entity type in the simulation.

For each road section there are different attributes associ-
ated with it. 1) Travel Time 2) Capacity 3) Current number
of vehicles. The capacity of section 6, the final section, is set
to infinity and a car entering this section is considered to be
exiting the simulation. All cars begin their journey in section
1.

There are traffic lights in the system between each of the
consecutive sections. The traffic lights at each of the intersec-
tions have been modeled as various state variables that are
functions of time as opposed to be ones managed by the simu-
lator engine. In this approach traffic lights are deterministic
and we know exactly what the signal will be at any given mo-
ment in time, hence are functions of time. In the other method,
traffic signals changes are modeled as events that are sched-
uled by the engine and are changed by the handler function
when executed. The behavior of both is equivalent. Both were
considered and this simulator implements the first approach.

Cars are generic entities that do not have any defining at-
tributes of their own at the moment except for their id, the
section they are currently in, the section they first entered
the simulation and the section they exited the simulation and
corresponding time stamps.

5.4 Implementation
One defining parameter of the simulation is the inter-arrival
δ time between cars reaching the first intersection. However
this interval is stochastic and is randomly generated. This is
modeled by creating an event scheduled at current time with
a handler for handling arrival of the car the first intersection.
Then another event is scheduled at a future time that is δ ahead
of current time for new arrival event. This is repeated for
every new arrival. Thus cars keep arriving at first intersection
separated by a random time δ. This simulator utilizes the
Poisson distribution at every intersection as was discussed in
Figure 4a.

Irrespective of which intersection it is, when an event for car
arriving at the intersection is executed it checks if the current
light is green and if the section ahead is not full, then the car
moves from the current section to the next one. Then a new
event is scheduled in future for this car for arriving at the next
intersection after τ time, equivalent to the travel time of the
section as discussed previously. If the light is red, then the car
cannot move forward and will have to wait till the light turns
green, hence a new event is scheduled in to the future for this
car when the light turns green. If the light is green and the
section ahead is full then this car will have to wait till someone
moves from the section ahead, this happens when the light
in the section ahead this turns to green and a corresponding
event is scheduled in future.

Section 6 has infinite capacity and cars cross over when
light turns green at the intersection. When a car enters section
6 it exits the simulation and no future events are scheduled
for this car.

We have defined the warmup time of the simulation as
the time till when the first exit happens. This ensures that all
sections of the roads have some vehicles in them.

The entire simulation has a fixed end time and when the
clock reaches this time the simulation ends. This is a user
defined parameter.

5.5 Limitations
This simulator doesn’t account for stochastic nature of vehicles
and physical phenomenon like appreciable acceleration and
deceleration. Effect of different kinds of vehicles (like cars,
trucks, cycles) in a real world is very different. This simulator
cannot take these into consideration as it assumes they are all
the same. Other random processes like vehicle breakdowns,
distracted driving are not accounted in these simulations and
may have a pronounced effect.

6 VERIFICATION
Verification of the simulator is simply assumed to be the ab-
sence of infinite loops and crashes in the code. The simulator
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also match expectations set out in this section of this work.
It seeks to match simulator results to the subsection of the
NGSIM data set discussed in Section 1 within a margin of
error. Some of the general validation methodology included
the creation of unit tests for each simulation and utility.

6.1 Activity Scanning
An example tester can be seen in the GenerationTester.py,
which simply generates a number of vehicles where you can
validate the distributions of origin/destination zone, vehicle
type and could be expanded to further test additional metrics
if more were added to the vehicle.

6.2 Cellular Automata
The verification of the cellular automata model was performed
using both manual inspection of the result and unit testing.
Due to the stochastic nature of the model, automated test-
ing is impractical to implement. For this reason, the verifi-
cation of the code is mainly done by running the simulator
and outputting the state of the simulator at each timestep.
These output are then manually inspected for errors. Unit
testing are also used where practical. This can be found in
CA_sim_test.py.

6.3 Event Oriented
The verification of the event oriented model is primarily for
the correct functioning of the event scheduler engine. This
was done to multiple manual unit tests to ensure that the
priority queue is correctly maintained and events are popped
in a timely fashion without breaking any laws of casualty.

Other verification tasks included correct event handler call-
backs for various kinds of events so that only authorized
events can call vehicle generation and departure handling.

7 VALIDATION
The mean travel time over multiple simulations ends up fol-
lowing a nice normal distribution curve, as seen in Figure
9. As seen in Figures ??, 9, 8 our simulators are in line with
each other, and are also realistic when compared to the overall
average travel time 2. All of the simulators were able to be
compared against one another, as well as against the true data
in order to ensure validity.

8 DESIGN OF EXPERIMENTS AND
OUTPUT ANALYSIS

The outputs that the team is concerned with are almost entirely
all Derived scalar output variables (DSOV). These DSOVs
are averaged values from a list of Point set output variables
(PSOV). In order to get a PSOV, you must do a single run
of the simulator. Our experiments revolved around running
multiple iterations of the simulator, and then interpreting
the data using 95% confidence intervals. As seen in Figure
9a,Figure 9c and Figure 9b the confidence intervals are very
tight and match the potential value calculated in the sample
reports given to the team. All experiments were designed for

individual simulators to have similar parameters (for example,
number of vehicles to spawn and the inter arrival time).

In addition, as a part of our analysis, we have designed and
expanded upon individual experiments that are discussed in
Section 9.

8.1 Warm up Period
A warm up period is the phenomena of an initial set of read-
ings as being different from the average, due to the initial
state of the simulation being empty. In the case of this traffic
simulator, the first few vehicles will have low travel times due
to the roads being "empty".

8.1.1 Activity scanning

The warm up period generally will depend on the inter-
arrival time of vehicles. By utilizing our Poisson distribution,
discussed in Section 1, we are able to keep the warm up period
to around 20 vehicles for the activity scanning simulation. In
order to still get realistic readings, we disregard those 20 initial
vehicles and will be sure to spawn extra vehicles to achieve
the number of readings we were targeting.

8.1.2 Cellular Automata

the warm-up period of the cellular automata was derived
from manual inspection of the vehicle travel time distribution.
This data is shown in figure 7. From the graph, the system
can be observed to be cyclical in nature. For this reason, the
warm-up period of the system is considered to be 1000 cycles.
The data is then recorded for 2000 cycles afterwards, giving
2000 seconds of data. Due to the timing logic of the simulator,
the simulator also has considerable cooldown time at the end
of the simulation. for this reason, the simulation is allowed to
run for 500 more cycles before termination. The data is then
cropped to the 2000 cycle section in the middle, discarding the
warmup and cooldown section of the data.

8.1.3 Event Oriented

We have defined the warmup time of the simulation as the
time till when the first exit happens. This ensures that all sec-
tions of the roads have some vehicles in them. This translates
to about 95s in the simulation time. Once the events before
warmup have been fitered out the results of the simulation are
fairly stationary and approximate the real dataset very well.

8.2 Simulation Results
8.2.1 Activity Scanning

For an individual simulation run, the travel times can be
seen in Figure 8. This can be compared to 2, showing the
individual travel times for the real life data collection. For
Activity scanning, it can be seen that there is a very binomial
distributed looking set of results. This is due in part to the
initial settings of the traffic lights. The initial period deter-
mines if all lights will be green together, or staggered etc. In
addition, there is a large group of vehicles with small travel
times. This is due to the vehicles spawned extremely close to
the ending/destination zone. After the execution of multiple

7
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Figure 7: Vehicle travel time as a function of time the vehicle enters the system for Cellular Automata simulation.
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(b) Cellular Automata
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Figure 8: Travel Time distribution in a Single Simulation

simulation runs, the confidence interval for this simulator at
95% was +-0.21, showing just how close and consistent the
data was.

8.2.2 Cellular Automata

Figure 8b shows the distribution of travel time for vehi-
cles in one simulation. The peak around 10 seconds could be
attributed to vehicles entering the system at the last intersec-
tion, after the traffic light. These vehicles can travel to the exit

almost instantaneously due to the short distance to the exit.
The 90% confidence interval of 0.5 seconds indicates that the
choice of warmup and cooldown is appropriate.

Figure 9b shows the mean travel time from 100 runs of cel-
lular automata simulation. From the graph, the simulation can
be observed to provide a result which resembles the normal
distribution. The slight peak at each ends of the distribution
can be attributed to vehicle being spawned at 113, the closest
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Figure 9: Mean Travel Time distribution

point to the exit, and vehicle spawned at 101 just before the
light turns red.

8.2.3 Event Oriented

Event driven simulation resulted in a mean travel time
of 94.51 seconds with a 95% confidence interval laying well
within 0.78 (Figure 9 when the simulator has been run for
over a 100 executions. This means that the simulator is fairly
confident about the result of its execution and the reliability
of the simulator is very high. The distribution as can be seen
is a very close to normal distribution implying that the results
are mean centered and the expectation of the simulation result
will lay close to the mean.

When we look at the distribution of travel times within
a single simulation, Figure 8c, we notice that there is strong
peak on the lower travel times and a spread in the higher
sides. The lower times are due to the vehicles being generated
in the pen-ultimate intersection and quickly passing through
into the exit section. However this also mather the original
distribution of the test set(Figure 2b), suggesting that our
simulators generalize the model although they only used the
the inter arrival time distributions from the train set.

8.2.4 Comparing the Simulators

As we can see in Figure 10 our different simulators when
run for 100 times generate mean travel time fairly consistently.
It falls well within the travel time as was captured from the
test set. This uniformity in the travel times across simulations
suggests the simulators are modeling what they want to model
reasonably (hence are also validated). Their equivalent slight
upwards deviation from the mean of test set suggests that
their assumptions are correlated and their simplifications are
logical, hence they model similar phenomenon.

50 100 150
Mean Travel Time (s)

Test Set

Activity Scanning

Cellular Automata

Event Oriented Queuing

Figure 10: Comparing Models

9 SCENARIOS
In this section, we test some scenarios we thought we interest-
ing, like a traffic flow of entirely motorcycles or trucks, how
the rate of flow of traffic can affect travel time.

9.1 Simulating Different Volumes of Traffic
Figure 11 shows the effect of varying the inter-arrival time, and
consequently traffic flow rate, of the incoming traffic. From
the graph, the mean travel time can be observed to decrease
with the increase in traffic flow. This counter-intuitive result is
due to the higher traffic flow having higher "back pressure"
preventing the new vehicles from entering the system before
the lights turns green, whereas with lower traffic, the vehicle
can enter the system and get stuck behind a red light.

The variation of λ is manifested in the form of peak traffic
times in real life like post work hours, or morning hours etc
when the number of vehicles entering at any given time is very
large as opposed to say lunch time. These two time periods

9
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Figure 11: Inter arrival rate vs Traffic Volume

would have a different value of λ with lunch time having a
larger value.

9.2 Varying the Length of Vehicles
Figure 12 shows the effect of variation in vehicle length. From
the graph, the effect of vehicle length can be observed to be
mostly linear with the vehicle length. this is due to longer
vehicles spending more time between the point its first part
enters the system and its last part leaving the system.
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Figure 12: Size of Vehicles vs Traffic Volume

This is similar to real systems as the effect of trucks entering
the roads. It is common intuition that big vehicles like trucks
take longer to navigate through traffic while shorter vehicles
like cycles can quickly slip through it.

10 CONCLUSION
We built models to simulate vehicles driving along the Peachtree
corridor. Although we took into account traffic in one direc-
tion we analyzed the average travel time for a vehicle to go
from the origination zone to the destination zone. We made
some simplifications and assumptions. However our simula-
tions were fairly equivalent and were consistent with actual
distributions. Our simulations also could be used to simulate
other phenomenon (traffic flow and different sizes of vehi-
cles) that weren’t present in the NGSIM data but were still
able to provide results that had intuitive explanations there
by providing credibility to our models.

10
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