
Correlated Q Learning:
On Multiagent Reinforcement learning in a Zero Sum Markov Game

Manikanta Reddy Dornala1

CS 7642 - Reinforcement Learning, Georgia Institute of Technology

Multi-Agent games are particularly interesting as
the best way to play them is guided by an equi-
librium that heavily depends on the payoff each
agent receives. The celebrated one of such equi-
libria is the Nash Equilibrium. Here we study
a generalization of multi-agent Q-Learning meth-
ods, Correlated Equilibrium which encompasses
Nash-Q and Friend-Foe-Q. We apply the algo-
rithms to a simulated game of Soccer, a Zero
Sum Game for which no deterministic equilibrium
policies exist.

I. INTRODUCTION

Reinforcement learning enables control agents to learn
different strategies to interact with the environment
through a sequence of observation, decisions, and reflec-
tions. The goal of any such agent is to observe the cur-
rent state of the environment and take an action that
maximizes the expected cumulative future reward. The
mathematical representation of this statement is given
by the Bellman equation for Q-value as

V ∗(s) = max
a′∈A(s)

Q∗(s′, a′)

Q∗(s, a) =
∑
s′

T (s, a, s′)(R(s, a) + γmax
a′

Q∗(s′, a′))

(1)
The optimal policy or the optimal decision function can
then be obtained by maximizing the Q-value function.

π∗(s) = argmax
a

Q∗(s, a) (2)

The Q-value can be approximated by the Q-Learning?

algorithm that iteratively updates Q-values in a Q-
table which converge to true optimal values over time.

Algorithm 1: Off Policy Q Learning (ε Greedy)

1Initialize: Q(s,a), π(s) and an initial state s
2while policy not converged do

3 a =

{
random(Action) with probability ε
maxa′ Q(s′, a′) otherwise

4 Take action a and then observe new state s′

5 y = R(s, a) + γmaxa′ Q(s′, a′)
6 Q(s, a) = Q(s, a) + α(y −Q(s, a))
7 π(s) = argmaxaQ(s, a), s = s′

8 decay α, ε

9end

Note that update for a time(t) depends on the ob-
servation from time(t+1) (maxa′ Q(s′, a′)). ∆ at any
time(t) doesn’t depend on the the action to be taken
at time(t+ 1), which will be dependent on the policy(π)

at t + 1. Hence the term Off Policy. In an On Pol-
icy Q Learning the maxa′ Q(s′, a′) is replaced by simply
Q(s′, a).

The above algorithm is suited to Single-agent prob-
lems. In order to apply the Q-Learning algorithm can
be modified in multiple ways, mostly changing the Value
function.

II. MULTI AGENT Q LEARNING AND GAMES

A multi-agent problem can be modeled as a game of
rewards. These games force the agents to evolve a strat-
egy to decide their policy. The strategies themselves are
based off on Equilibrium conditions set forth by their
payoffs. This can be done by simply modifying the Value
function for each agent in the algorithm.

Vi(s) = f(Q1, Q2, ..., Q3) (3)

For a simple two agent zero sum game, the Friend Q1

algorithm is given by

V1(s) = maxaQ1(s, a)

V2(s) = maxaQ2(s, a)
(4)

This is suited to coordination games with unique equilib-
rium as each agent tends to expect the other agent will
perform an action that’ll be beneficial to him.

On the other hand is the Foe Q tries to maximize the
minimum of an agent’s expected reward. This makes him
aggressive towards the other player.

V1(s) = maxσ1∈Σ1(s)mina2∈A2(s)Q1(s, σ1, a2) = −V2(s)

Q(s, σ1, a2) =
∑

a1∈A1(s)

σ1(a1)Q(s, a1, a2)

(5)
For a n-player, general sum game. we redefine the Value
function as follows.

Vi(s) ∈ NASH(Q1(s), Q2(s), ..., Qn(s)) (6)

Notice the ∈ operator, as there could be multiple equi-
librium positions, we have to choose one. In Zero Sum
Games, the Nash Equilibrium and Minimax strategy co-
incide. But the above replacements are case specific. In
order to generalize Greenwald proposed an alternative
definition in Markov games.2

Vi(s) ∈ CEi(Q1(s), ..., Q2(s)) (7)

CEi denotes the ith player’s reward according to some
Correlated Equilibrium in the general sum game deter-
mined by the rewards. This definition encapsulates all
the above replacements as well. Since a Nash Equilib-
rium is also a Correlated Equilibrium.



2

III. CORRELATED EQUILIBRIUM

A Nash equilibrium simply put is a probability distri-
bution over actions generated such that the agents opti-
mize with respect to one others probabilities. Othe other
hand, Correlated Equilibrium is a more general equilib-
rium which permits dependencies among multiple agents
probabilities, all while individual agents optimize. One
might ask why choose CE over Nash. It’s not because
it is more general but because CE is easily computable
for multi-agent problems via Linear Programming as op-
posed to Nash.

A famous illustration of CE is given by the traffic
lights example. consider two cars that are at a junc-
tion on opposite ends. They can both now take actions
(GO,STOP ) If both take GO they crash and receive a
-10 each. If one takes a GO and the other a STOP, the
one that takes a GO receives a 5 and the other a 1. If
both wait by taking a STOP, both receive a -1.

Since a Nash Equilibrium is one where no agent has
any incentive to change its strategy. This game has two
Nash Equilibrium, A1 take GO and A2 takes STOP or
A1 takes STOP and A2 takes GO, but both prefer a GO.
Hence will crash or will wait indefinitely,

A CE is attained when a player takes an action (A)
receives a reward that is at least that of taking any other
action (not A) assuming the player takes the first action
(A).

A CE would give a joint probability distribution over
these two essentially forcing the game into one of its Nash
Equilibrium. Much like a fair traffic light, that sometimes
STOPs the first agent and sometimes the second agent.

2. GO 2. STOP
1. GO -10, -10 3, 1

1. STOP 1, 3 -1, -1

The Correlated equilibrium is given by solving the fol-
lowing equations

πGG ≥ 0, πGS ≥ 0, πSG ≥0, πSS ≥ 0

πGG + πGS + πSG + πSS = 1

R1
GG ∗ πGG +R1

GS ∗ πGS ≥ R1
SG ∗ πGG +R1

SS ∗ πGS
R1
SG ∗ πSG +R1

SS ∗ πSS ≥ R1
GG ∗ πSG +R1

GS ∗ πSS
R2
GG ∗ πGG +R2

SG ∗ πSG ≥ R2
GS ∗ πGG +R2

SS ∗ πSG
R2
SS ∗ πSS +R2

GS ∗ πGS ≥ R2
SG ∗ πSS +R2

GG ∗ πGS
(8)

solving the above set, without any other constraints gives

πGG = πSS = 0

πSG = πGS => 0.5
(9)

Well its a fair traffic light! Half of the time it allows
Player 1 to GO and the other to STOP and rest of the
time the other way. But it never allows the players to
take the same action at the same time which is worse for
both.

IV. CE Q LEARNING

There are 4 variants of CE Q Learning where further
conditions ensure the equilibrium is unique.

1. Maximize the sum of Players rewards
(Utilitarian uCE −Q)

σ ∈ argmax
σ∈CE

∑
i∈I

∑
a∈A

σ(a)Qi(s, a)

2. Maximize the minimum of player’s rewards
(Egalitarian eCE −Q)

σ ∈ argmax
σ∈CE

mini∈I
∑
a∈A

σ(a)Qi(s, a)

3. Maximize the maximum of player’s rewards
(Republican rCE −Q)

σ ∈ argmax
σ∈CE

maxi∈I
∑
a∈A

σ(a)Qi(s, a)

4. Maximize the maximum of individual player’s rewards
(Libertarian lCE −Q)

σ =
∏
i

σi

σi ∈ argmax
σ∈CE

∑
a∈A

σ(a)Qi(s, a)
(10)

Now CEi(Q(s)) =
∑
a∈A σ(a)Qi(s, a) where σ is ob-

tained by either of the four conditions.

V. SOCCER GAME

To study the behavior of the Correlated Q Agents we
implement a simple Two Player Soccer Game. The game
is a simple 2x4 grid with the state determined by the
possession of the ball by the player. There are five actions
(N, E, W, S, Stay) available for each player. A reward of
100 is awarded when a player either scores or the other
player self-goals. In either case, the opponent receives
a -100 and then the game ends. There are more rules
regarding stealing the ball, collision, and others.

There exists a special state exists as depicted in the
image where an action South is taken by A and player B
sticks. We base our experiments on the Q value of this
particular state action pair.



3

VI. EXPERIMENTS

Each agent is simulated for a 106 iterations and the
error is noted as the absolute difference between the pre-
vious Q value of the special state action pair with the
current Q value. Player A from here on will be our pro-
tagonist.

There was initially a bit of confusion regarding the defi-
nition of iteration, whether it was the number of episodes
of games simulated or the total number of steps simu-
lated. We initially took the pain of simulating the ex-
periment for a million episodes a lot more than what’s
necessary and found the graphs to be converging with a
tenth of what was expected.

That is when a careful analysis revealed that on an
average a game completes in 10 steps and after 105 games
there isn’t anymore learning whatsoever.

A. On Policy ε greedy Q Learner

As stated earlier for an On Policy Q Learner the update
is given by R(s, a) + γQ(s′, a). The agent assumes the
problem to be a single agent and updates its own Q-table
without worrying about anything else only by observing
the outcomes of the actions it takes at different states.

0 200000 400000 600000 800000 1000000
Iteration

0.0

0.1

0.2

0.3

0.4

0.5

Q 
Va

lu
e 

Di
ffe

re
nc

e

On-Policy Q

This agent diverges as there is no general deterministic
solution to solve this problem. The convergence towards
the end is solely due to low α due to decay. The Q
Learning agent has a decaying α tending to 0.001 by the
end.

The original 2003 paper doesn’t mention how the α
decays, but the subsequent 2005 paper mentions that α
decays as the inverse of number of visits to the state ac-
tion pairs, but then the Q Learning graph doesn’t match
with the original (In 2005 the plots are for 2 ∗ 105 itera-
tions only. So we choose to simply decay it exponentially

to 0.001 with a decay rate of 0.0011/106

0.999999. Vary-
ing the function of decay rate drastically changes the way
the plot behaves, suggesting that the original decay rate
is very specific.

B. Friend Q Learner

In the friend Q learning algorithm, we assume that
the second player always takes actions that will help our
player. This can be implemented by a simple Off Policy Q
Learner that takes in the second player’s action as input
as well. Since we are only trying to find the best Q values
both the players always take random actions irrespective
of player A’s Q table.

0 200000 400000 600000 800000 1000000
Iteration

0.0

0.1

0.2

0.3

0.4

0.5

Q 
Va

lu
e 

Di
ffe

re
nc

e

Friend Q

As expected Friend-Q quickly converges. This is be-
cause of our assumption that player B will score the goal
for us, we just have to pass it on to B in our special state.
Such Optimism much wow.

Interesting varying the decay rate of alpha, in this case,
doesn’t offer much. No matter what it is, the algorithm
quickly converges within a 105 iterations or even faster
but no later.

VII. FOE Q

As mentioned earlier Foe Q both players try to min-
imize the other player’s returns. This in-turn implies
that each other value functions are simply negations of
the other. So we need to only maintain one Q Table for
player A and we also know the Q table for B. The min-
max objective is obtained by solving a set of constraints
via linear programming.

maximize : cTx

subject to : Ax ≤ b
: x ≥ 0

(11)

A =



1 QNN QNS QNE QNW QNSt

1 QSN QSS QSE QSW QSSt

1 QEN QES QEE QEW QESt

1 QWN QWS QWE QWW QWSt

1 QStN QStS QStE QStW QStSt

0 −1 0 0 0 0
0 0 −1 0 0 0
0 0 0 −1 0 0
0 0 0 0 −1 0
0 0 0 0 0 −1
0 1 1 1 1 1
0 −1 −1 −1 −1 −1



b =



0
0
0
0
0
−1
−1


c =


−1
0
0
0
0
0



(12)



4

The solution x, if converged, would be the probabilities
of taking a particular action. This implies that FoeQ
generates a Non-Deterministic policy at state S.

0 200000 400000 600000 800000 1000000
Iteration

0.0

0.1

0.2

0.3

0.4

0.5

Q 
Va

lu
e 

Di
ffe

re
nc

e

Foe Q

Foe-Q converges and produces a mixed strategy for the
agent. The mixed strategy is such that the opponent has
the best strategy.

VIII. CE Q

CE Q is very similar to Foe Q except that we now
maintain 2 tables one for each player and the set of con-
straints is far higher. The paper mentions that all the
equilibria are equivalent and went with the utilitarian
CE. We are now optimizing the joint expectation of the
sum of Q values of both the players. Following in the
lines of traffic game we’ll have 20 constraints per player
and a 25 positivity constraints. Overall the matrix A is
now of shape 67x26. The c vector is simply -1 with neg-
ative of sum of individual Q values for every action A,
action B pair.

0 200000 400000 600000 800000 1000000
Iteration

0.0

0.1

0.2

0.3

0.4

0.5

Q 
Va

lu
e 

Di
ffe

re
nc

e

Correlated Q

The correlated equilibrium will again generate a nonde-
terministic policy in case of convergence with a probabil-
ity distribution over both the agents actions a (5x5 =)25
dimensional vector.

In some sense, CE Q provides a rational distribution
by placing a constraint the current actions expected value
is always more of equal to the conditional expectation of
the value of other actions given that this action is taken.
This increases the probability of an action to be taken
conditional the given action.

Both Correlated-Q and FoeQ are supposed to be the
same, as all equilibria are same for this problem. How-
ever, due to random initializations, it seems that both of
them vary a bit in the beginning while they are diverging.
But after 200K iterations, when the convergence is in-
evitable, both the algorithms produce the same updates
and the errors converge and produce the same mixed pol-
icy in the end.

It is important the both the algorithms have the
same initial α and same decay rate to produce matching
graphs. This is because they produce the same update
but the rate it which it is applied is on us and it should
match for the differences to match.

IX. CONCLUSION

This is one of those experiments where reproduction is
particular challenging due to vague description of hyper-
parameters. To add to the misery the 2005 version of
the paper does things differently and produces entirely
different set of results although the general trend remains
same.

X. REFERENCES

1M. L. Littman, in ICML, Vol. 1 (2001) pp. 322–328.
2A. Greenwald, K. Hall, and R. Serrano, in ICML, Vol. 3 (2003)
pp. 242–249.


