
A Survey of Supervised Learning Algorithms
An Analysis of Performance and Complexity

Manikanta Reddy Dornala
CS 7641 - Machine Learning, Georgia Institute of Technology

1 CLASSIFICATION PROBLEMS
If we have a set of points (X), in any dimension (D), and each sample
has some label given from a label set (L), then the classification prob-
lem is to assign a label from L to an unlabeled point when presented
with some labelled points.

X = {x1,x2,x3, ...}

L = {l1, l2, ...}

F : X → L

The goal of any classification algorithm is to learn(fit) the function
F , the labeling function.

IfL is a set of only two labels then it becomes a binary classification
problem. In this surveywe only consider binary classification problems.
Multi-label classification problems, with L labels can be converted into
L binary problems, by defining a new problem for each label that
classifies them as having a label l and not having label l for each l ∈ L.

Some algorithms implicitly do well with Multi-label classification
while some algorithms only solve binary classification (and conse-
quently multilabel ones). This does not mean they cannot perform
good multi-label classification, just that the way we implement them
is different. For example, if we use an SVM for multilabel dataset
(with |L| , 2 we will have to build many SVM models instead of
one to do a one-vs-one or one-vs-many labeling. That didn’t seem fair.
Hence we compare the algorithms on equal footing with only binary
classification.

2 DATASETS
We generate two different kinds of datasets to bring into light the
ability of the algorithms. There are two kinds of datasets in our exper-
iments. Linearly separable and linearly in-separable. Some algorithms
are inherently linear and try to find a hyper-plane that separates the
two classes, while some can create more complex decision boundaries.

The datasets generated contain points that can be classified into
one class or the other based on some function, which we want the
algorithms to learn. The important thing to note is that the data is
separable and not randomly classified into two sets, although the
algorithms will try to find the function corresponding to the random
classification anyways. The datasets contain points in a D dimensional
space.

2.1 Linearly Separable Data
If F is such that it defines a hyper-plane in D dimensions that divides
the data in X into two classes(L = {l1, l2}) then we say the data is
linearly separable, otherwise there will be a complex function that can
classify the points making the problem linearly inseparable.

Mathematically if there exists a hyper-plane f : wT x + b = 0 such
that we can define F as

F =

{
f (x) = wT x + b > 0 =⇒ l1
f (x) = wT x + b < 0 =⇒ l2

then the set X is linearly separable in D dimensional space.

Class A

Class B

Class A

Class B

Figure 1: Visualizing Linearly Separable data in 2d and 3d

Here we see how the points are distributed in space. The two colors
represent different classes. The separating hyper-plane f in the 2d
space is the line in black and in 3d space its a plane.

2.2 Linearly Inseparable Data
In this second set we generate data such that there is no linear hyper-
plane that can separate the two classes. The simplest way to do this is
two imagine two concentric circles. The separating boundary in such
a case would be a hyper shell. The points are classified based on their
distance from the center (C). Such a function would look like

F =

{
f (x) = dist(x ,C) − R > 0 =⇒ l1
f (x) = dist(x ,C) − R < 0 =⇒ l2

Note that this is specifically for the data being generated in our ex-
periments. There are uncountable number of ways to generate linearly
inseparable data with more complex decision boundaries.

Class A
Class B

Class A
Class B

Figure 2: Visualizing Linearly In-Separable data in 2d and 3d

3 EXPERIMENTS
We’ll implement various algorithms under various hyper parameters
to understand how these hyper parameters affect the algorithm’s per-
formance. Performance metric for us is the accuracy of the algorithm
in correctly predicting a blinded set, its stability across various data
points (i,e. its ability to generalize and not be specific to the set we
picked) and the time it takes to learn.

The implementation of the entire pipeline is in python and asso-
ciated libraries including sklearn, numpy, pandas, seaborn and mat-
plotlib. The plots shown in the next sections are for Accuracy, Training
Time, Learning Curve and ROC. In the plots there are some areas in
transparent gray. It captures the standard deviation of the metric in
5-fold cv.

3.1 Data Generation
We decided to generate a 32 Dimensional data with 10,000 unique
points. They are generated using the above mentioned methods in
section 2. Of these 10000 points in each dataset 20% are sampled and
set aside and will not be used for training purposes. This will be our
testing set and the accuracy of a model is assessed on this set when
comparing different algorithms.

3.2 Hyper-Parameter Tuning
Each algorithm has a ton of hyper parameters that can be tuned. To find
the best set for each algorithm and thereby generate its best model that
can generalize we perform a cross validated hyper parameter space
search.

The search of this space can be performed in various ways. Grid
Search being a very straight forward one. If there are 3 hyper-params
that can be chosen fromA = {a1,a2, ...,aka },B = {b1,b2, ...,bkb },C =
{c1, c2, ..., ckc } we do a ordered search of params among the ka ∗

kb ∗ kc possible parameter groups. This is a very time consuming
process but will give us a great insight into how the variation in
a particular hyper-param affects the algorithm’s performance (both
time and accuracy). Another way to do a hyper-param search is to
perform a Random search in the hyper-param space. Usually the hyper-
params are correlated with the performance (as you’ll see later) and
this enables us to directly sample from a distribution of hyper-params
and climb the hill. But in our experiments we will use a grid search to
understand this behavioral variance disregarding any correlation.

In order to have faith in the chosen hyper-parameter set, we should
see whether the algorithm generalizes its learnings and is not conform-
ing to the data set fed into it. In order to achieve this we perform a 5
fold cross validation. In every fold, 20% of the training set (containing
8000 points) is randomly sampled and kept aside, the model is trained
on the remaining 6400 points on all hyper-parameter sets in the search
space and its accuracy is tested for on the separated 20% set. Once this
is done for all the 5 folds, the accuracy for each hyper-parameter set
is averaged across folds and the best performing set is picked.

3.3 ROC Curve
For a classification problem it is not just enough to look at how the
testing accuracy we need to look at its sensitivity and precision as
well. Both of these are well captured in a ROC curve, the area under
that curve being a good measure of trust.

3.4 Learning Curves
In order to understand how well an algorithm learns its good to see
how much data it consumes in process. Learning curves are generated
over the entire dataset of 10000 points by cross validating on 20%
validation set and increasing the number of training points from 1 to
8000 in 5 folds.

3.5 Effect of Dimensions
Why 32 features is good question, hence I also threw in an experiment
that compares the algorithms accuracy when changing the number of
features.

3.6 SVC
Support vector machines are inherently linear algorithms that try to
find an optimal hyper-plane that discriminates the two classes. This
algorithm accepts various hyper-parameters that govern its learning.
Among them we chose the Kernel function and the Regularization
parameter.

3.6.1 Kernel Function

If the data is not linearly separable it helps to jump into higher
dimensions and look at it again. For example if there was a third
dimension in the 2d linearly in-seperable data that captured how far
the point is from center, ie, (x ,y,x2 + y2) then the data would

Figure 3: Kernel Function (x ,y,x2 +y2) on some 2d inseparable
data

look something like a cone with upper half being one class and
the lower half the other (Figure 3). Then we can have a hyperplane
seperating the two classes. This was a function that computed the
radius.

Instead SVM can use a kernel function that projects the data in
a different space. We experiment on two of them. Linear and Radial
Basis Function. The linear one doesn’t change anything. RBF on the
other hand simulates the projection in infinite dimensions.

3.6.2 Regularization Parameter

Termed C in sklearn library is a cost associated with the tolerance
for misclassification. A smaller C would mean the machine looks for
a plane that has a large margin, meaning a plane that can seperate
the classes very distinctly conversely a larger C looks for a smaller
margin.

3.6.3 Analysis

SVM performs well on the linearly separable data. On dataset1 svm
finds the best model with linear kernel and has no regard for C (as the
data already had a clear seperation with good margin). On the other
hand linear kernel on dataset 2 can never do better than 0.5 accuracy
as any hyper plane would cut the hyper-sphere at best in half and
its learning time keeps increasing with C. On dataset 2 it might have
worked well with a polynomial kernel of degree two, however rbf is
an infinite projection and may introduce some information that’s hard
to interpret, this is also evident from rbf performing bad in dataset 1.

Both take relatively same amount of time for their best models for
training. Notice how increasing C increases training time for linear
kernel while decreasing for rbf on both datasets. This is because they
are trying to find even smaller margins and taking more iterations
for it but due to the actual linear hyperplane being only of a certain
margin and they cannot do any better than it, which is also why the
accuracy plateaus.

2

With dataset 1 the algorithm is able to very well generalize the
seperating plane as seen in learning curves. For dataset 2, it needs
relatively more points to reach better accuracies. Dataset 1 being very
seperable in its own space, a small sample data is enough to generate
the hyperplane.

On the blind set AUC is very high for both suggesting class im-
balance in test wouldn’t have affected the accuracy. Notice how the
testing accuracy for dataset 2 is same as the training one although the
AUC is 1.

0 2 4 6 8
C

0.5

0.6

0.7

0.8

0.9

1.0

Te
st

in
g

Sc
or

e
(C

V=
5)

kernel
linear
rbf

(a) Hyper Parameter Search

0 2 4 6 8
C

10

20

30

40

Tr
ai

ni
ng

 T
im

e
(s

) (
CV

=5
) kernel

linear
rbf

(b) Tranining Times for Params

2000 4000 6000 8000
Training examples

0.5

0.6

0.7

0.8

0.9

1.0

Sc
or

e

Training score
Cross-validation score

(c) Learning Curve

0.0 0.2 0.4 0.6 0.8 1.0
False Positive Rate

0.0

0.2

0.4

0.6

0.8

1.0

Tr
ue

 P
os

iti
ve

 R
at

e

Blinded Testing
AUC: 1.0
Accuracy: 1.0

(d) ROC Curve

Figure 4: SVC on Linearly Seperable Data

0 2 4 6 8
C

0.5

0.6

0.7

0.8

0.9

1.0

Te
st

in
g

Sc
or

e
(C

V=
5)

kernel
linear
rbf

(a) Hyper Parameter Search

0 2 4 6 8
C

50

100

150

200

250

Tr
ai

ni
ng

 T
im

e
(s

) (
CV

=5
) kernel

linear
rbf

(b) Tranining Times for Params

2000 4000 6000 8000
Training examples

0.5

0.6

0.7

0.8

0.9

1.0

Sc
or

e

Training score
Testing score (CV=5)

(c) Learning Curve

0.0 0.2 0.4 0.6 0.8 1.0
False Positive Rate

0.0

0.2

0.4

0.6

0.8

1.0

Tr
ue

 P
os

iti
ve

 R
at

e

Blinded Testing
AUC: 1.0
Accuracy: 0.81

(d) ROC Curve

Figure 5: SVC on Linearly Inseperable Data

3

3.7 DTC
Decision Trees work by making threshold cuts on various features
at different places repeatedly. As a result they end up making high
resolution grids as separation boundaries. The cuts are made until
a split results in one set having some purity or a desired criteria is
met. The basis of these cuts is decided by an impurity function. The
algorithm will accept when a cut with a certain tolerance of impurity
is made and the two halves are compared. The hyperparameters tested
are the maximum depth of the tree and the criterion of splitting.

3.7.1 Impurity Function

An impurity occurs when a set has instances of a different class
than intended for. The algorithm may stop splitting because we run
out of features to split on, or we can tolerate a certain percentage of
impurity. This is is also called gini index of impurity.

Another way to decided upon is to look for the randomness(aka
impurity) in the set as Entropy. Based on this impurity functions a
DT would choose a feature, threshold to split on that causes it to have
maximum information gain.

3.7.2 Maximum Depth

Fixing the maximum depth of the tree is a way of pruning. This
allows for faster training but generates weaker learners for lower
depths.

Here is a sample of how the DT algorithm would define its bound-
aries in 2d. This is with gini criterion and a max depth of 8. Notice
how the splitting is more pronounced at the boundaries of two classes.
Gini is forcing the algorithm is to make a cut around the boundary to
decrease the impurity count. Essentially DT tried to approximate the
circle as an edged polygon in the inseperable case and jaggered line in
the seperable one.

3.7.3 Analysis

Notice how increasing the tree depth after a certain threshold
doesn’t affect the accuracy as well as the training time. This is be-
cause the algorithm exhausted the available features. When does that
occur? depth > D = 32.

Entropy computation is costlier than simple impurity count. Hence
entropy takes significantly more time in both the cases. There seems
to be little effect due to the choice of splitting criteria. Maybe because
both were able to provide same gain.

Surprisingly approximating the non-linear boundary is done in a
better way than the linear one. Although it takes more time to do so,
dataset 2 has higher accuracy in both validation and blinded testing.
It is also evident from the generalization in AUC.

The learning curve suggests that the algorithmwill definitely benefit
from being trained on more samples. More samples translates to finer
boundaries and better accuracy.

0 25 50 75 100 125
Max Tree Depth

0.5

0.6

0.7

0.8

0.9

1.0

Te
st

in
g

Sc
or

e
(C

V=
5)

Splitting Criteria
entropy
gini

(a) Hyper Parameter Search

0 25 50 75 100 125
Max Tree Depth

0.2

0.4

0.6

0.8

1.0

1.2

Tr
ai

ni
ng

 T
im

e
(s

) (
CV

=5
)

Splitting Criteria
entropy
gini

(b) Tranining Times for Params

2000 4000 6000 8000
Training examples

0.5

0.6

0.7

0.8

0.9

1.0

Sc
or

e

Training score
Cross-validation score

(c) Learning Curve

0.0 0.2 0.4 0.6 0.8 1.0
False Positive Rate

0.0

0.2

0.4

0.6

0.8

1.0

Tr
ue

 P
os

iti
ve

 R
at

e

Blinded Testing
AUC: 0.71
Accuracy: 0.72

(d) ROC Curve

Figure 7: DTC on Linearly Seperable Data

4

0 25 50 75 100 125
Max Tree Depth

0.5

0.6

0.7

0.8

0.9

1.0

Te
st

in
g

Sc
or

e
(C

V=
5)

Splitting Criteria
entropy
gini

(a) Hyper Parameter Search

0 25 50 75 100 125
Max Tree Depth

0

1

2

3

4

5

Tr
ai

ni
ng

 T
im

e
(s

) (
CV

=5
)

Splitting Criteria
entropy
gini

(b) Tranining Times for Params

2000 4000 6000 8000
Training examples

0.5

0.6

0.7

0.8

0.9

1.0

Sc
or

e

Training score
Testing score (CV=5)

(c) Learning Curve

0.0 0.2 0.4 0.6 0.8 1.0
False Positive Rate

0.0

0.2

0.4

0.6

0.8

1.0

Tr
ue

 P
os

iti
ve

 R
at

e

Blinded Testing
AUC: 0.91
Accuracy: 0.91

(d) ROC Curve

Figure 8: DTC on Linearly Inseperable Data

3.8 ABC
The Ada Boost classifier is an ensemble approach that combines weak
classifiers to emulate a better one. A single classifier may perform
poorly but the combination of them, with correct voting strategies can
create a better classifier with higher accuracies.

This algorithm trains new weak classifiers by selectively choosing
data points based on the accuracy of previous classifiers. All such
classifiers are assigned appropriate weights based on their accuracy
and voting is performed.

The choosing of the data points is done in away thatmis-classifications
from previous classifiers are better understood in the subsequent clas-
sifiers. The individual classifiers have to be better than random, so
anything less than 0.5 is discouraged by assigning a negative weight
and so on. A typical weight (Alpha) vs error rate would look like Figure
9.

Figure 9: Typical Alpha-Error Curve [1]

0.460 0.465 0.470 0.475 0.480 0.485
Error Rate

0.06

0.08

0.10

0.12

0.14

0.16

Al
ph

a

Figure 10: Current Alpha-Error Curve

The current classifiers were all better than random and lied in the
small linear region (Figure 10)

Decision tress were used as the weak classifiers for the algorithm
and their depth and number are varied. The decision tree splitting
criteria was set to ’gini’ for faster training times as seen previous
section.

3.8.1 Max Depth

Varying the Max Depth of the decision tree will change the accura-
cies of individual learners. Hence an important parameter to see how
well the ensembling works.

3.8.2 Number of Estimators

The number of weak learners that will be used in the algorithm.

3.8.3 Analysis

Adaboost is incredibly good on both data sets and isn’t affected by
the boundary. It also generalizes very quickly and needs fewer points
to achieve greater accuracies.

As can be seen increasing the depth of decision tree is a bad idea. It
not only increases the training time very much but the lower depth

5

trees outperform deeper trees. This is because the higher depth ones
will be overfitting the sample they are showed, decreasing the overall
accuracy. In lieu of both time and accuracy keeping lower depth(consequently
weaker learners) helps the ensembling. The striking point being that it
is unaffected by the kind of data it is acting on. Both data sets perform
very well with depth 1 trees.

0 1000 2000 3000 4000
Decision Trees

0.5

0.6

0.7

0.8

0.9

1.0

Te
st

in
g

Sc
or

e
(C

V=
5)

Max Tree Depth
1
2
4
8
16

(a) Hyper Parameter Search

0 1000 2000 3000 4000
Decision Trees

0

500

1000

1500

2000

2500

Tr
ai

ni
ng

 T
im

e
(s

) (
CV

=5
) Max Tree Depth

1
2
4
8
16

(b) Tranining Times for Params

2000 4000 6000 8000
Training examples

0.5

0.6

0.7

0.8

0.9

1.0

Sc
or

e

Training score
Cross-validation score

(c) Learning Curve

0.0 0.2 0.4 0.6 0.8 1.0
False Positive Rate

0.0

0.2

0.4

0.6

0.8

1.0

Tr
ue

 P
os

iti
ve

 R
at

e

Blinded Testing
AUC: 1.0
Accuracy: 0.98

(d) ROC Curve

Figure 11: ABC on Linearly Seperable Data

0 200 400 600 800 1000
Decision Trees

0.5

0.6

0.7

0.8

0.9

1.0

Te
st

in
g

Sc
or

e
(C

V=
5)

Max Tree Depth
1
2
4
8
16

(a) Hyper Parameter Search

0 200 400 600 800 1000
Decision Trees

0

200

400

600

Tr
ai

ni
ng

 T
im

e
(s

) (
CV

=5
) Max Tree Depth

1
2
4
8
16

(b) Tranining Times for Params

2000 4000 6000 8000
Training examples

0.5

0.6

0.7

0.8

0.9

1.0

Sc
or

e

Training score
Testing score (CV=5)

(c) Learning Curve

0.0 0.2 0.4 0.6 0.8 1.0
False Positive Rate

0.0

0.2

0.4

0.6

0.8

1.0

Tr
ue

 P
os

iti
ve

 R
at

e

Blinded Testing
AUC: 1.0
Accuracy: 0.98

(d) ROC Curve

Figure 12: ABC on Linearly Inseperable Data

Increasing the number of trees has an exponential effect in the
beginning and then plateaus as they cannot do any better than the
training set, while also being able to generalize it for the testing set.

So the best way to use Adaboost is to use weak classifiers and many
of them.

6

3.9 KNNC
The K-nearest neighbor algorithm will try to justify that a given point
behaves as its neighbors do. It considers a local neighborhood and
looks at majority class in the neighborhood to predict the outcome of
the current point.

3.9.1 Distance Metric

In considering a local neighborhood it is important to define a
metric for proximity. There are various ways to measure distance and
the Minkowski metric is one of them.

distance(A,B) = (

D∑
i=1

|Ai − Bi |
p)

1
p

By varying p you get different distances, for p=1 it is taxi cab dis-
tance, p=2 it is eucledian, etc

3.9.2 Number of Neighbors

Based on the distance metric, during testing the algorithm computes
the closest N neighbors and puts them up for a vote. This value of N
can be varied.

3.9.3 Analysis

KNN performs poorly on both the data sets, merely better than
random for the second one. This might be due to the points on the
boundaries. For the points near the boundary, any neighborhood cho-
sen at whatever distance, it is always very likely that both classes are
present in equal proportions making it hard to guess the correct class
of the point. Hence the poor performance. This is also clear with the
plateauing accuracy with increase in the number of neighbors. As the
neighborhood size increases the equal proportion mishap is even more
plausible.

There seems to be no effect of the metric chosen. Maybe because of
the density and uniform distribution of data.
Note that there is no training for KNN. Everything happens during
testing hence it is better to look at the testing times.

0 20 40 60
Neighbors

0

20

40

60

80

100

Te
st

in
g

Ti
m

e
(s

) (
CV

=5
)

Metric
Eucledian
Manhattan
Minkowski (p=3)

(a) Linearly Seperable

0 20 40 60
Neighbors

0

20

40

60

80

100

Te
st

in
g

Ti
m

e
(s

) (
CV

=5
)

Metric
Eucledian
Manhattan
Minkowski (p=3)

(b) Linearly Inseperable

Figure 13: Testing Times for Params

Computing the polynomial metric seems to take a lot of time as
opposed to the others. Maybe because Manhattan and eucledian are
highly optimized metrics in the library.

When computing the nearest neighbors we can do some prepro-
cessing during training to store the datapoints in a efficient manner.
I left it to default in the sklearn library which automatically chooses
the preprocessing algorithm based on other hyper params and data
from ’ball tree’, ’kd tree’, ’brute’. These optimizations changing might
be the reason for the peak in training time at one spot.

The learning curve suggests that knn generalizes quickly about
what it can and any new data cannot make it better.

Such a low AUC would mean the hypothesis of KNN is void.

0 20 40 60
Neighbors

0.5

0.6

0.7

0.8

0.9

1.0

Te
st

in
g

Sc
or

e
(C

V=
5)

Metric
Eucledian
Manhattan
Minkowski (p=3)

(a) Hyper Parameter Search

0 20 40 60
Neighbors

0.05

0.10

0.15

0.20

Tr
ai

ni
ng

 T
im

e
(s

) (
CV

=5
) Metric

Eucledian
Manhattan
Minkowski (p=3)

(b) Tranining Times for Params

2000 4000 6000 8000
Training examples

0.5

0.6

0.7

0.8

0.9

1.0

Sc
or

e

Training score
Cross-validation score

(c) Learning Curve

0.0 0.2 0.4 0.6 0.8 1.0
False Positive Rate

0.0

0.2

0.4

0.6

0.8

1.0

Tr
ue

 P
os

iti
ve

 R
at

e

Blinded Testing
AUC: 0.97
Accuracy: 0.83

(d) ROC Curve

Figure 14: KNNC on Linearly Seperable Data

7

0 20 40 60
Neighbors

0.5

0.6

0.7

0.8

0.9

1.0

Te
st

in
g

Sc
or

e
(C

V=
5)

Metric
Eucledian
Manhattan
Minkowski (p=3)

(a) Hyper Parameter Search

0 20 40 60
Neighbors

0.05

0.10

0.15

0.20

0.25

0.30

Tr
ai

ni
ng

 T
im

e
(s

) (
CV

=5
) Metric

Eucledian
Manhattan
Minkowski (p=3)

(b) Tranining Times for Params

2000 4000 6000 8000
Training examples

0.5

0.6

0.7

0.8

0.9

1.0

Sc
or

e Training score
Testing score (CV=5)

(c) Learning Curve

0.0 0.2 0.4 0.6 0.8 1.0
False Positive Rate

0.0

0.2

0.4

0.6

0.8

1.0

Tr
ue

 P
os

iti
ve

 R
at

e

Blinded Testing
AUC: 0.58
Accuracy: 0.59

(d) ROC Curve

Figure 15: KNNC on Linearly Inseperable Data

3.10 ANNC
For artificial neural networks I decided to stick to simple 3 layered
network. I decided to cap the number of iteration on a very high
end and left it to the algorithms to stop when the improvement over
iterations is very small. The affect of number of iterations is captured
via proxy of the accuracy plots and training time plot combined.

3.10.1 Solver

In order to optimize the weights of the network various optimizers
can be used. Among them due to direct library support we here choose
among "SGD", "LBFGS" and "ADAM". LBFGS method is faster than the
other two for small datasets. [2]

3.10.2 Hidden Layer Size

By introducing more nodes into the hidden layer we can estimate
more complex boundaries than a simple linear perceptron. In theory
a single hidden layer, with enough number of nodes, should be able
to approximate any function. Hence I thought it would be interesting
to see how increasing the number of nodes in the single hidden layer
increases the model complexity and its ability to generalize.

3.10.3 Analysis

First thoughts are that neural networks are slow. Looking at the
time taken for training neural networks when compared to the other
algorithms we notice they are on a different scale. But then again the
choice of optimizer plays an important role.

On dataset 2: LBFGS and Adam are very fast compared to SGD
even when the number of nodes in hidden layer is very large. They
tend to find the minima quicker in fewer iterations. SGD maybe stuck
in a local minima leading to a lower testing accuracy. However the
variance in the accuracy suggests sometimes it crawls down the hill.

In terms of hidden layer size, the peaking begins to occur when
the number of nodes is greater than 32 suggesting that at this model
complexity the network is able to capture the non linearity and after
that beyond 64 nodes any addition only leads to minor improvements
(and extra time). Increasing the model complexity didn’t affect the
accuracy much later on.

This tells us that when building models it might be helpful to have
the hidden layer twice as long as many features.

On dataset 1 however increasing the model complexity decreases
the accuracy. This is because for the linearly seperable data a simple
perceptron would have been enough. By adding more nodes we are
trying to fit higher degree functions leading to overfitting.

In fact with so many nodes the network can almost remember every
training point it has seen.

On both datasets LBFGS performed the best considering both time
and accuracy.

The learning curves suggest that while the simpler model in dataset
1 could easily generalize the hyperplane, more inseperable data could
benefit the algorithm’s accuracy on dataset 2.

8

0 25 50 75 100 125
Hidden Layer Nodes

0.5

0.6

0.7

0.8

0.9

1.0

Te
st

in
g

Sc
or

e
(C

V=
5)

Solver
adam
lbfgs
sgd

(a) Hyper Parameter Search

0 25 50 75 100 125
Hidden Layer Nodes

100

200

300

400

Tr
ai

ni
ng

 T
im

e
(s

) (
CV

=5
) Solver

adam
lbfgs
sgd

(b) Tranining Times for Params

2000 4000 6000 8000
Training examples

0.5

0.6

0.7

0.8

0.9

1.0

Sc
or

e

Training score
Cross-validation score

(c) Learning Curve

0.0 0.2 0.4 0.6 0.8 1.0
False Positive Rate

0.0

0.2

0.4

0.6

0.8

1.0

Tr
ue

 P
os

iti
ve

 R
at

e

Blinded Testing
AUC: 1.0
Accuracy: 1.0

(d) ROC Curve

Figure 16: ANNC on Linearly Seperable Data

0 5000 10000 15000
Hidden Layer Nodes

0.5

0.6

0.7

0.8

0.9

1.0

Te
st

in
g

Sc
or

e
(C

V=
5)

Solver
adam
lbfgs
sgd

(a) Hyper Parameter Search

0 5000 10000 15000
Hidden Layer Nodes

0

10000

20000

30000

40000

Tr
ai

ni
ng

 T
im

e
(s

) (
CV

=5
) Solver

adam
lbfgs
sgd

(b) Tranining Times for Params

2000 4000 6000 8000
Training examples

0.5

0.6

0.7

0.8

0.9

1.0

Sc
or

e

Training score
Testing score (CV=5)

(c) Learning Curve

0.0 0.2 0.4 0.6 0.8 1.0
False Positive Rate

0.0

0.2

0.4

0.6

0.8

1.0

Tr
ue

 P
os

iti
ve

 R
at

e

Blinded Testing
AUC: 1.0
Accuracy: 0.97

(d) ROC Curve

Figure 17: ANNC on Linearly Inseperable Data

9

4 EFFECT OF DIMENSIONS

10 20 30 40
Dimensions

0.65

0.70

0.75

0.80

0.85

0.90

0.95

1.00
Te

st
in

g
Sc

or
e

SVC
DTC
ABC
KNNC
ANNC

(a) Testing Accuracy

10 20 30 40
Dimensions

0

50

100

150

200

250

Tr
ai

ni
ng

 T
im

e
(s

)

SVC
DTC
ABC
KNNC
ANNC

(b) Tranining Time

10 20 30 40
Dimensions

0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

Te
st

in
g

Ti
m

e
(s

)

SVC
DTC
ABC
KNNC
ANNC

(c) Testing Time

Figure 18: Effect of number of dimensions on Linearly Sepera-
ble Data

Since we generating our data it is easy to change the problem
and visualize how it affects the performance. To get these metrics
since we are not interested in how the algorithms hyper parameters
are affecting them, we ran a Randomized Search in the same hyper
parameter space as the previous sections on a 5 fold cv. The search took
too long for neural nets and I decided to cut it out off discussion. Note
that for every dimension there will be different model with different
hyperparameters and we are comparing the best the algorithm can do
with the data on any given number of features.

Support vector machines, Decision trees and Adaboost classifier(due
to its base estimator being a DT) seem to be unaffected by dimension-
ality in terms of training time required (Although it does increases

10 20 30 40
Dimensions

0.5

0.6

0.7

0.8

0.9

1.0

Te
st

in
g

Sc
or

e

SVC
DTC
ABC
KNNC

(a) Testing Accuracy

10 20 30 40
Dimensions

0

20

40

60

80

100

Tr
ai

ni
ng

 T
im

e
(s

)

SVC
DTC
ABC
KNNC

(b) Tranining Time

10 20 30 40
Dimensions

0.0

0.5

1.0

1.5

2.0
Te

st
in

g
Ti

m
e

(s
)

SVC
DTC
ABC
KNNC

(c) Testing Time

Figure 19: Effect of number of dimensions on Linearly Inseper-
able Data

slightly). On the other hand KNN and Artificial neural networks keep
increasing in time. For ANN initially there seems to be a drop, maybe
because of a complex model being chosen in cross validation. But the
trend is that training times increase.

For accuracy, lower dimensions are of course better, but Boosting
is unaffected in both data sets. Probably because ensembling relies on
low depth decision trees that diregard dimensionality.

SVM also remains stable owing to the kernel functions which emu-
late infinite dimensions irrespective of the feature space of the data.
But then again for other algorithms it tends to decrease.

Decision tree climbs up in accuracy after certain dimenions on
linearly inseperable suggesting in higher dimensions it may be easier
to approximate a hyper sphere boundary as hyper cube sides.

Testing time on the other hand is almost 0 for Decision trees as a
tree traversal is fast irrespective of the dimensions. But the overall

10

times for others are very small although they show an increasing trend
as well.

The amount of training data required for an algorithm is roughly
2D , which in our case of 10000 points translates to D ≈ 13. These algo-
rithms do have elbow points between 10-20 for the linearly inseperable
data.

5 CONCLUSION
Table 1: On Linearly Seperable Data

Algorithm Testing Score Training Time (s) Testing Time (s)
SVC 0.998 8.554 0.020
DTC 0.7185 0.839 0.004
ABC 0.98 500.2 0.217
KNNC 0.827 0.029 2.969
ANNC 0.997 0.857 0.003

Table 2: On Linearly Inseperable Data

Algorithm Testing Score Training Time (s) Testing Time (s)
SVC 0.805 42.070 2.394
DTC 0.914 6.243 0.003
ABC 0.985 85.630 0.219
KNNC 0.588 0.029 2.8
ANNC 0.987 1351.90 0.026

Here we are looking at the best models performance on the with
the accuracy on blinded test set, total training time for the model and
total testing time.

The reason Adaboost classifier on first dataset took 500s is just
because themodel chosen has large number of trees. From our previous
discussion there was only minimal improvement beyond a point, and
we could have stopped there. However the grid search picked the
absolute best scorer.

K-nearest neighbors performs good on linear set while fails on
dataset 2, due to seperation boundary issues discussed earlier.

Combining all of these learnings we infer that neural networks
are great however we might have to spend a lot of time to find the
best model. Boosting according to me the best algorithm so far owing
to accuracy and training time. We can achieve very high accuracies
irrespective of the dimensions and data size in relatively low times.

REFERENCES
[1] “Adaboost tutorial.” [Online]. Available: http://mccormickml.com/2013/12/13/

adaboost-tutorial/
[2] S. Ruder, “An overview of gradient descent optimization algorithms,” Nov 2018.

[Online]. Available: http://ruder.io/optimizing-gradient-descent/

11

http://mccormickml.com/2013/12/13/adaboost-tutorial/
http://mccormickml.com/2013/12/13/adaboost-tutorial/
http://ruder.io/optimizing-gradient-descent/

	1 Classification Problems
	2 Datasets
	2.1 Linearly Separable Data
	2.2 Linearly Inseparable Data

	3 Experiments
	3.1 Data Generation
	3.2 Hyper-Parameter Tuning
	3.3 ROC Curve
	3.4 Learning Curves
	3.5 Effect of Dimensions
	3.6 SVC
	3.7 DTC
	3.8 ABC
	3.9 KNNC
	3.10 ANNC

	4 Effect of dimensions
	5 Conclusion
	References

