
A Deep Q Learning Experiment
On the mechanics of Landing a module on Moon

Manikanta Reddy Dornala
CS 7642 - Reinforcement Learning, Georgia Institute of Technology

In this experiment we implement a neural network
based agent to optimize a future reward function
for a sequential decision problem and explore the
numerous intricacies involved in the problem. We
present an agent that successfully learns to con-
sistently steer towards the goal in a simulation of
a module landing on the moon built upon OpenAI
Gym[1]. We incorporate ideas frommultiple previ-
ous works and adapt them to the specific problem.

1 INTRODUCTION
Reinforcement learning enables control agents to learn different strate-
gies to interact with the environment through a sequence of obser-
vation, decisions, and reflections. The goal of any such agent is to
observe the current state of the environment and take an action that
maximizes the expected cumulative future reward. The mathematical
representation of this statement is given by the Bellman equation for
Q-value as

Q∗(s,a) =
∑
s ′

T (s,a, s ′)(R(s,a) + γ max
a′

Q∗(s ′,a′)) (1)

The optimal policy or the optimal decision function can then be
obtained by maximizing the Q-value function.

π∗(s) = argmax
a

Q∗(s,a) (2)

The Q-value can be approximated by the Q-Learning[6] algorithm
that iteratively updates Q-values in a Q-table which converge to true
optimal values over time.
Algorithm 1: Off Policy Q Learning
1 Initialize: Q(s,a), π (s) and an initial state s
2 while policy not converged do
3 a = π (s)

4 Take action a and then observe new state s ′

5 y = R(s,a) + γ maxa′ Q(s ′,a′)
6 Q(s,a) = Q(s,a) + α(y −Q(s,a))

7 π (s) = argmaxa Q(s,a), s = s ′

8 end

Note that update for a time(t) depends on the observation from
time(t+1) (maxa′ Q(s ′,a′)). ∆ at any time(t) doesn’t depend on the
the action to be taken at time(t + 1), which will be dependent on the
policy(π) at t + 1. Hence the term Off Policy. (appendix A)

The above algorithm has a high chance of being stuck with a sub-
optimal policy when the world is non-deterministic (most, if not all
problems). This is because we may never visit some of the states ever.
It is in some sense a very safe agent that never takes risks and accepts
its fate when the universe plays dice.

2 ϵ GREEDY ACTION SELECTION POLICY

It is imperative that the agent venture beyond its known experiences
and explore. Every now and then it should take actions against the
optimal policy learned based on the experiences so far. At the same
time, place safe bets by exploiting its knowledge. The ϵ greedy pol-
icy suggests that the agent choose a random action from the action

space,A, with a probability ϵ and the optimal action with a probability
1−ϵ during the action-selection phase. This has to be performed instead
in Line 3 in Algorithm 1.

a =

{
random(Action) with probability ϵ
maxa′ Q(s ′,a′) otherwise (3)

ϵ can be a constant or some variable function. Constant value can lead
to arrogant behavior, hence in practice it is good to use a time-decaying
ϵ function.

3 Q-LEARNING IN CONTINUOUS STATE
SPACES

Defining state transitions based on actions taken and computing the
transition probabilities workswell in discreteworlds. Regular problems
are too large for us to keep track of all state-action pairs. Instead, we
approximate Q values with a function Q(s,a,Θ), where Θ is the set of
parameters that defines the function approximation.

We consider the problem where the state space is continuous but
the actions are discrete and finite (n in number). In such case the Q
function (or the action-value function) takes as input an action(a)
(from a discrete set) and a state(s) (comprising of continuous values).
We can look at this in a different way as having n different functions
each giving out a Q-value for the state(s), such that the function that
produces the maximum Q-value is the optimal action at that state.

In such case, the Off policy ϵ greedy Q learning algorithm remains
the same except for the update step at 6 in Algorithm 1 by a different
update rule.

One of the updates, which will find a minimum, that can be iter-
atively performed on the parameters Θ is via a loss function L(Θ)
given by

Y
Q
t = Rt+1 + γ max

a
Q(st+1,a,Θt)

L(Θt) ∝ E
st ,at

(Y
Q
t −Q(st ,at ,Θt))

2

∇(L(Θt)) = (Y
Q
t −Q(st ,at ,Θt))∇ΘtQ(st ,at ,Θt)

Θt+1 = Θt + α(∇(L(Θt))

(4)

Neural networks are a kind of function estimators that are driven by
gradient descent in general.

4 DEEP Q LEARNING[3]
We construct a neural network with weights(Θ), input(s) and n output
nodes, each output node corresponding to Q-value of taking an action
i for the input state(s).

But instead of driving the update rule on the values from the pre-
vious iteration, we pick random (action-values, state) pairs from a
sample space as there is a lot of correlation between continuous states,
which could lead to over-fitting and divergence. The sample-space is
a random sampling of experiences from the agent’s memory, collected
over many episodes. This technique is termed Experience Replay.

The agent thus learns from past experiences in general instead of
immediate experiences and is expected to reach a global minimum.
Algorithm 2: ϵ greedy Off Policy Deep Q Learning
1 Initialize: Neuralnet weights Θ , an initial state s and a fifo

queue buffer B of finite size
2 for episode = 1,E do
3 for time = 1,T do

4 at =

{
random(Action) with probability ϵ
maxa Q(st ,a,Θt) otherwise

5 Take action at and then observe new state s ′t and reward
received rt

6 Enque (st ,at , rt , s ′t) in B

7 Sample a minibatch b observations,
{(ssj , saj , sr j , ss

′
j)|j in 1, b} from B

8 for j in 1,b do
9 δ = maxsa′ Q(ssj+1, sa′,Θt)

10 yj =

{
sr j if ssj+1 is terminal
sr j + γδ otherwise

11 end
12 Update Θ using any loss(L(Θ)) optimization algorithm

over (sj ,yj)∀j ∈ 1, b. (appendix B)
13 end
14 end

We’ll apply this learning agent on the Lunar Lander simulation

5 LUNAR LANDER
Lunar lander is an environment available in OpenAI gym. It simulates
the landing of a module on the surface of moon. Fig. 1

Figure 1: Lunar lander with state vectors

The state of the lander at any given moment of time is defined by 8
continuous variables.x ,y,vx ,vy ,ϕ orientation ,ω angular speed , c1ground
contact of leg1 , c2 ground contact of leg2.

It can perform four discrete actions, do nothing, fire right, fire left,
fire main. Every fire of main engine is rewarded −0.3. A Crash −100.
Come to rest 100. Land on the pad between 100...140. The environment
stops beyond 1000 time frames. So the worst possible scenario leads
to a reward aleast −240.

This particular discrete action−continuous state problem can be
solved by a simple PID controller but it involves a fair bit of physical
understanding of action space and assumptions about the environment
(appendix C).

On the other hand, Q-Learning needs no prior knowledge and no
interpretation of the transition. s

r
−→
a

s ′.
The neural network implemented is a multilayer perceptron with 3

hidden layers. Multiple configurations of ϵ , b and other params have
been experimented and most of them produce similar results as below.

0 200 400 600 800 1000
Episodes

−400

−200

0

200

400

Learning to Land

steps (0.5x)
scores
loss
epsilons (500x)
scores running mean

0 20 40 60 80 100
Episodes

−200

−100

0

100

200

300

400

500
Testing Mode
steps (0.5x)
scores
scores running mean

The agent continually learns to produce a reward slightly less than
100. Notice that most of the runs in training are governed by 1000
runs episodes. Which means the lander didn’t manage to crash land
but began to hover in mid-air. This is the case of converging to a local
minimum, where the lander avoids huge punishment from crashing
and spends on fuel for hovering.

6 DOUBLE Q LEARNING[5]
Vanilla Deep Q Learning is very optimistic, it tries to avoid great
punishments and accepts anyone who offers a morsel of positive future
reward and converge to a suboptimal policy.

Due to the nature of max operator DQN also leads to overestima-
tions in values which results in propagation of wrong information
about the information of which states are more valuable directly affect-
ing the quality of policy. The max operator ignores underestimations
of Q values but honors a Q value that has been wrongly overestimated
when selecting the optimal policy.

Both of these can be prevented by introducing a second neural
network in the agent. While the first model learns the optimal policy
the other model decides the current optimal policy. The second model
is updated with the new parameters from the first one every now and
then.

Y
Q
t = Rt+1 + γ max

a
Q(st+1,a,Θ

′)

Θt+1 = Θt + α(∇(L(Θt))

Θ′ = Θ Every now and then

(5)

If we keep the hyper parameters of vanilla dqn 4 the same and intro-
duce a second network that is updated every (n = 1000) observations
we achieve a considerable improvement in performance averaging
about a per episode score of 170. We are close!

But notice how there are still a lot of episodes that take the 1000
step runs. The lander still aims to receive a less negative reward by
avoiding the ground.

2

0 200 400 600 800 1000
Episodes

−400

−200

0

200

400

Learning to Land

steps (0.5x)
scores
loss
epsilons (500x)
scores running mean

0 20 40 60 80 100
Episodes

−200

−100

0

100

200

300

400

500
Testing Mode

steps (0.5x)
scores
scores running mean

7 PREFERENTIAL MEMORY
Landing on the ground is a particular set of sequences that when
happen to lead to a huge positive reward. By our exploration strategy,
the landing event happens enough times that the lander knows there
is a positive reward state but is not confident enough that it takes that
course of action over and over.

To increase the confidence in events leading to landing, we increase
the chance of such (state, action, reward, next state) tuples from being
sampled during the model update step. Whenever an action leads to
a positive reward, we re-save the same tuple multiple(a constant τ)
times. This is slightly different from the method prescribed in Priori-
tized Experience Replay[4] where a probability weight is assigned to
experiences in memory based on the TD error term.

The average test score is now about ∼ 199, with the same setting in
other hyperparameters as in 6

0 200 400 600 800 1000
Episodes

−400

−200

0

200

400

Learning to Land

steps (0.5x)
scores
loss
epsilons (500x)
scores running mean

0 20 40 60 80 100
Episodes

−200

−100

0

100

200

300

400

500
Testing Mode

steps (0.5x)
scores
scores running mean

8 ON MODELS AND HYPER PARAMETERS
8.1 Model Size and Depth
The neural network comprises of nodes grouped into layers. In general,
we measure the size of a model by the number of nodes it has and the
depth of model by the number of layers.

In general, on increasing the size of a model decreases the rewards
obtained. As this lead to more parameters and overgeneralization of
the problem.

On the other hand, if we fix a number of nodes(= 100) and build a
deep network, the reward increases!

Theoretically, a neural network with only 1 hidden layer should
be able to approximate any function with enough nodes. But a deep
network is, capable of learning abstract concepts in the data with a
few nodes. When a back-propagation update occurs, the weights of
the shallow network simply adjust to memorize the input.

8.2 Updating the Second Model
As we employed Double Deep Q learning, we need to update the
target model every n observations. This is expected to bring down

3

over-fitting. We define update rate as observation interval between
successive updates of the target model.

As we can see small update rates tend to give smaller rewards as
they can be overestimated by the same model. This was expected as
small update rate would mean that target and model are temporally
similar. After achieving a maximum, increasing the update rate will
bring the reward down as in limit a large update rate would mean
no update at all. For our model, an update rate around 800 is in the
Goldilocks zone.

8.3 Preferential Memory Re-save
Wementioned how we save positively rewarding experiences multiple
times. This approach(τ resave) increases preference by a direct increase
in population.

As can be seen, increasing how frequently good experiences are
sampled in general increases the reward. Notice that towards the end,
the difference between multiple preferential re-save rates begins to
blur. (Unarguably 0 re-saves still lags behind).

This is because, as more and more samples are drawn from a pop-
ulation dominated by good observations, and the epsilon for action
selection goes down, the agent will be taking good actions anyway.
That means either we re-save or not the agent’s memory is going to
be saturated with good experiences. The greatest effect of preferen-
tial re-saves is to speed up the convergence towards good actions. 0
re-saves will eventually get towards it through more iterations.

8.4 γ and ϵ decay

There are sweet-spots for bothγ (reward decay) and ϵ decay to produce
high rewards. They are essentially attributed to being the balance
between relying too much on expected future rewards and exploring
just enough to find the rewarding states.

9 CONCLUSION
The best model is three layers deep, with 100 nodes, 10 re-saves, 800
target-update rate, 0.975 ϵ decay and 0.99 γ . This agent consistently
provided a score > 200 averaging around ∼ 221. The behavior of the
landing trajectory is strikingly similar to one produced by a PID con-
troller(appendix C), which is based on the physics and understanding
of the system. It is quite remarkable that the agent learns the ways of
the world and its mathematics without any prior knowledge of the
same.

0 20 40 60 80 100
Episodes

−200

−100

0

100

200

300

400

500
Testing Mode

steps (0.5x)
scores
scores running mean

4

10 APPENDIX
A OFF POLICY VS ON POLICY UPDATES
Off-policy learners compute one policy while following another. They
can learn the optimal policy regardless of the behavior of the current
policy. Whereas On Policy learners believe their current policy is good
enough and try to improve upon it. Both stem from the temporal
difference update given by

Q(st+1,at+1) = Q(st ,at) + α(yt −Q(st ,at)) (6)

The difference between both learners is the update(y)

SARSA (On Policy) : yt = rt + γQ(st ,at)
Q-Learning (Off Policy) : yt = rt + γ max

a′
Q(st ,a

′)
(7)

Themax operator in Q-Learning makes the update step, current action
agnostic. However the same max can cause the neural network to
diverge due to its non linear nature.

On policy, methods are stable and converge but might be trapped
in locally optimal policies.

B OBJECTIVE OPTIMIZATION
Optimization algorithms optimize (minimize or maximize) a Target
Objective function[8]. Target functions in our cases are also labeled
as Error, Loss or Cost functions L(Θ). The goal of the optimization
algorithm is to find a function y = F (x ,Θ) such that the value of
L(x ,y,Θ)∀x is optimized in the space of x ,y.

Optimization can be done by solving for F with constraints defined
by L in a space D. The solution is obtained by solving simultaneous
equations generated by ∇L = 0 in D. For example,

Let : (x ,y) ∈ D = {(1.01, 1.99), (2, 4), (3.99, 8.01)}
F (x ,Θ) : y = θx

L(x ,y,Θ) : e = (y − F (x ,Θ))2

Goal : Minimize L
Solution : θ = 2

(8)

It is hard to solve directly when the dimensionality of the parameter
vector Θ and available space D is huge. Instead, we apply iterative
algorithms. Equation 4 is one such algorithm called Stochastic Gradient
Descent.

In the neural network built for solving Lunar Lander, we use the
Adam[2] optimizer. It is known to perform well when the parameter
space and data space are large.

C PID CONTROLLER[9] SOLUTION
Although reinforcement learning shows promise in learning to land the
module on themoon. The caveat here is the tremendous amount of time
and computing power it took to build and empower the agent to steer
it correctly. With better knowledge and a precise implementation, we
can beat the game. This method has nothing to do with Reinforcement
Learning and we slide it in from learnings of a different course(AI
for Robotics). Please note that this procedure relies heavily on the
knowledge about the system and environment. That implies we know
which action does what.

In control systems, the agent is expected to do something along a
pre-estimated function. The action you take is to minimize a utility
function (u(t)). (same old story).

u(t) = τpe(t) + τi

∫ t

0
e(λ)dλ + τd

de(t)

dt
(9)

The trick in here lies in defining e(t) for our problem. We define
two functions instead of one. The first to correct horizontal drift and

the second to correct the velocity on touchdown at unit time steps.

uvy (t) = τpvy + τi

∫ t

0
vydt + τd

dvy

dt

= τpvy + τiy + (iдnorinд)

uϕ (t) = τp (x +vx − ϕ) + τi

∫ t

0
(x +vx − ϕ)dt + τd

d(x +vx − ϕ)

dt

= τp (x +vx ∗ 1 − ϕ) + (iдnorinд) + τd (vx − ω)
(10)

For sake of brevity, we consider only terms that will be available.
Integral of deviation and Derivative of velocity aren’t directly available
through state, so we ignore them.

Since we can take only one action at any given time, we do nothing
when |uvy |, |uϕ | < η, fire main engine if |uvy | > |uϕ |, right engine
when uϕ > η and left engine when uϕ < −η.

The parameters are generally tuned using a coordinate descent[7]
algorithm (Twiddle)(yet an other objective optimization algorithm),
but for this case it was easy enough to handpick producing a 222mean
score!!!

0 20 40 60 80 100
Episodes

100

150

200

250

300

350

400
PID performance

scores
steps

0 50 100 150 200 250 300
Steps

−0.3

−0.2

−0.1

0.0

Corrections required

horizontal drift correction
velocity correction

As mentioned earlier, the PID controller generated trajectory is
strikingly similar to the one produced by the best RL agent.

5

D REFERENCES
REFERENCES
[1] Brockman, G., Cheung, V., Pettersson, L., Schneider, J., Schulman, J., Tang, J., and
Zaremba, W. (2016). Openai gym.

[2] Kingma, D. P. and Ba, J. (2014). Adam: A method for stochastic optimization. CoRR,
abs/1412.6980.

[3] Mnih, V., Kavukcuoglu, K., Silver, D., Graves, A., Antonoglou, I., Wierstra, D., and Ried-
miller, M. A. (2013). Playing atari with deep reinforcement learning. CoRR, abs/1312.5602.

[4] Schaul, T., Quan, J., Antonoglou, I., and Silver, D. (2015). Prioritized experience replay.
CoRR, abs/1511.05952.

[5] van Hasselt, H., Guez, A., and Silver, D. (2015). Deep reinforcement learning with
double q-learning. CoRR, abs/1509.06461.

[6] Watkins, C. J. C. H. and Dayan, P. Q-learning.
[7] Wikipedia. Coordinate descent.
[8] Wikipedia. Mathematical optimization.
[9] Wikipedia. PID controller.

6

	1 Introduction
	2 normalnormal Greedy Action Selection Policy
	3 Q-Learning in Continuous State spaces
	4 Deep Q LearningDeepQLearning
	5 Lunar Lander
	6 Double Q LearningDBLP:journals/corr/HasseltGS15
	7 Preferential Memory
	8 On Models and hyper parameters
	8.1 Model Size and Depth
	8.2 Updating the Second Model
	8.3 Preferential Memory Re-save
	8.4 and decay

	9 Conclusion
	10 Appendix
	A Off Policy vs On Policy updates
	B Objective Optimization
	C PID Controllerwiki:PIDcontroller Solution
	D References
	References

